
NAG Fortran Compiler Release 5.3

July 31, 2012

1 Name

nagfor — NAG Fortran Compiler Release 5.3

2 Usage

nagfor [mode] [option]... file...

3 Description

nagfor is the interface to the NAG Fortran Compiler system. The compiler translates programs written in Fortran
into executable programs, relocatable binary modules, assembler source files or C source files.

The mode determines the action performed, and can be one of

=compiler
Compile (and/or link) the files; this is the default mode if none is specified.

=callgraph
Produce a callgraph of the Fortran routines in the files (see the Producing a Call Graph section).

=depend
Produce a dependency analysis of the Fortran files (see the Dependency Analysis section).

=polish Pretty-print (polish) the Fortran files (see the Source File Polishing section).

Options that do not apply to the current mode of operation (e.g. polish options when the mode is for compilation)
are ignored.

4 File Types

A file ending in ‘.f90’ or ‘.f95’ is taken to be a Fortran free-form source file, a file ending in ‘.f’, ‘.for’ or ‘.ftn’
is taken to be a Fortran fixed-form source file; these assumptions can be overridden with the −fixed or −free option.
A file ending in ‘.ff90’ or ‘.ff95’ is taken to be a free-form file requiring preprocessing by fpp, and a file ending
in ‘.ff’ is taken to be a fixed-form file requiring preprocessing by fpp. A file ending in ‘.F90’ or ‘.F95’ is taken to
be a free-form file requiring preprocessing by fpp, and a file ending in ‘.F’ is taken to be a fixed-form files requiring
preprocessing by fpp.

If a filename without a suffix is provided nagfor will look for a file with the suffix ‘.f95’, and if that does not exist,
the suffix ‘.f90’.

Non-intrinsic modules and INCLUDE files are expected to exist in the current working directory or in a directory named
by the −I option.

5 Compiler Options

−132 Increase the length of each fixed source form input line from 72 characters to 132 characters. This has no
effect on free source form input.

1

−Bbinding
Specify static or dynamic binding. This only has effect if specified during the link phase. The default is
dynamic binding. These options are positional and can be used to selectively bind some libraries statically
and some dynamically.

−c Compile only (produce .o file for each source file), do not link the .o files to produce an executable file.
This option is equivalent to −otype=obj .

−C Compile with all but the most expensive runtime checks; this omits the −C=dangling and −C=undefined
options.

−C=check
Compile checking code according to the value of check, which must be one of:

all (perform all checks except for −C=undefined),
array (check array bounds),
bits (check bit intrinsic arguments),
calls (check procedure references),
dangling (check for dangling pointers),
do (check DO loops for zero step values),
none (do no checking: this is the default),
present (check OPTIONAL references),
pointer (check POINTER references),
recursion (check for invalid recursion) or
undefined (check for undefined variables).

The −C=undefined option is subject to a number of limitations and is not binary-compatible with code
compiled without that option; see the Undefined Variable Detection section for further details.

−colour Colour the message output from the compiler using ANSI escape sequences and the default foreground
colouring scheme which is: red for error messages (including fatal errors), blue for warning messages and
green for information messages.

−colour=scheme
Colour the message output from the compiler according to the specified scheme. This is a comma-separated
list of colour specifications, each consisting of a message category name (“error”, “warn” or “info”) followed
by a colon and the foreground colour name, optionally following by a plus sign and the background colour
name. The colouring for unspecified categories will be the default.

Colours are: black, red, green, yellow, blue, magenta, cyan and white.

E.g. —colour=error:red+blue,warn:cyan,info:magenta+yellow
would be a rather garish colour scheme.

−compatible
Make external linkages compatible with other compilers where possible; on Windows this is Microsoft For-
tran, on Mac OSX and Linux this is g77, g95 and gfortran, and on other systems this is the operating system
vendor’s compiler. This affects the naming convention and procedure calling convention (for example, on
Windows it causes use of the “STDCALL” calling convention that is commonly used for most DLLs).

−convert=format
Set the default conversion mode for unformatted files to format. This format may be overridden by an
explicit CONVERT= specifier in the OPEN statement, or by the environment variable FORT CONVERTn (where
n is the unit number). The value of format must be one of the following (not case-sensitive):

Format Description
BIG ENDIAN synonym for BIG IEEE
BIG IEEE DD big-endian with IEEE floating-point, quad precision is double-double
BIG IEEE big-endian with IEEE floating-point, including quad precision
BIG NATIVE big-endian with native floating-point format
LITTLE ENDIAN synonym for LITTLE IEEE
LITTLE IEEE DD little-endian with IEEE floating-point, quad precision is double-double
LITTLE IEEE little-endian with IEEE floating-point, including quad precision
LITTLE NATIVE little-endian with native floating-point format
NATIVE no conversion (the default)

2

−Dname
Defines name to fpp as a preprocessor variable. This only affects files that are being preprocessed by fpp.

−dcfuns Enable recognition of non-standard double precision complex intrinsic functions. These act as specific
versions of the standard generic intrinsics as follows:

Non-standard Equivalent Standard Fortran Generic Intrinsic Function
CDABS(A) ABS(A)
DCMPLX(X,Y) CMPLX(X,Y,KIND=KIND(0d0))
DCONJG(Z) CONJG(Z)
DIMAG(Z) AIMAG(Z)
DREAL(Z) REAL(Z) or DBLE(Z)

−double Double the size of default INTEGER, LOGICAL, REAL and COMPLEX. Entities specified with explicit kind num-
bers or byte lengths are unaffected. If quadruple precision REAL is available, the size of DOUBLE PRECISION
is also doubled.

−dryrun Show but do not execute commands constructed by the compiler driver.

−dusty Allows the compilation and execution of “legacy” software by downgrading the category of common errors
found in such software from “Error” to “Warning” (which may then be suppressed entirely with the −w
option). This option disables −C=calls, and also enables Hollerith i/o (see the −hollerith io option).

−encoding=charset
Specifies that the encoding system of the Fortran source files is charset, which must be one of ISO Latin 1,
Shift JIS or UTF 8. If this option is not specified, the default encoding is UTF-8 for Fortran source files
that begin with a UTF-8 Byte Order Mark, and ISO Latin-1 (if the language setting is English) or Shift-JIS
(if the language setting is Japanese) for other Fortran source files.

−english Produce compiler messages in English (default).

−F Preprocess only, do not compile. Each file that is preprocessed will produce an output file of the same
name with the suffix replaced by .f, .f90 or .f95 according to the suffix of the input file. This option is
equivalent to −otype=Fortran.

−f90 sign
Use the Fortran 77/90 version of the SIGN intrinsic instead of the Fortran 95 one (they differ in the treatment
of negative zero).

−f95 Specify that the base language is Fortran 95. This only affects extension message generation (Fortran 2003
and 2008 features will be reported as extensions).

−f2003 Specify that the base language is Fortran 2003. This only affects extension message generation (Fortran
2008 features will be reported as extensions).

−f2008 Specify that the base language is Fortran 2008. This is the default.

−fixed Interpret all Fortran source files according to fixed-form rules.

−fpp Preprocess the source files using fpp even if the suffix would normally indicate an ordinary Fortran file.

−free Interpret all Fortran source files according to free-form rules.

−g Produce information for interactive debugging by the host system debugger.

−g90 Produce debugging information for dbx90, a Fortran 90 aware front-end to the host system debugger. This
produces a debug information (.g90) file for each Fortran source file. This option must be specified for both
compilation and linking.

−gc Enables automatic garbage collection of the executable program. This option must be specified for both
compilation and linking, and is unavailable on IBM z9 OpenEdition and Windows x64. It is incompatible
with the −thread safe and −mtrace options. For more details see the Automatic Garbage Collection section.

−gline Compile code to produce a traceback when a runtime error message is generated. Only routines compiled
with this option will appear in such a traceback. This option increases both executable file size and execution
time. For example:

3

Runtime Error: Invalid input for real editing
Program terminated by I/O error on unit 5 (Input_Unit,Formatted,Sequential)
main.f90, line 28: Error occurred in READ_DATA
main.f90, line 57: Called by READ_COORDS
main.f90, line 40: Called by INITIAL
main.f90, line 13: Called by $main$

−help Display a one-line summary of the options available for the current mode (=compiler , =callgraph, =depend
or =polish).

−hollerith io
Enable Fortran-66 compatible input/output of character data stored in numeric variables using the A edit
descriptor. This was superseded by the CHARACTER datatype in Fortran 77.

−hpf Accept the extensions to Fortran specified by the High Performance Fortran Forum in HPF 1.0. These
consist of the EXTRINSIC keyword and a large number of compiler directives. The compiler directives are
checked for correctness but have no effect on compilation.

−I pathname
Add pathname to the list of directories which are to be searched for module information (.mod) files and
INCLUDE files. The current working directory is always searched first, then any directories named in −I
options, then the compiler’s library directory (see the −Qpath option).

−indirect file
Read the contents of file as additional arguments to the compiler driver. This option may also be given by
“@file”; note in this case there is no space between the ‘@’ and the file name.

In an indirect file, arguments may be given on separate lines; on a single line, multiple arguments may be
separated by blanks. A blank can be included in an option or file name by putting the whole option or file
name in quotes ("); this is the only quoting mechanism. An indirect file may reference other indirect files.

−ieee=mode
Set the mode of IEEE arithmetic operation according to mode, which must be one of full, nonstd or stop.

full enables all IEEE arithmetic facilities including non-stop arithmetic.
nonstd Disables non-stop arithmetic, terminating execution on floating overflow, division by zero or in-

valid operand. If the hardware supports it, this also disables IEEE gradual underflow, producing
zero instead of a denormalised number; this can improve performance on some systems.

stop enables all IEEE arithmetic facilities except for non-stop arithmetic; execution will be terminated
on floating overflow, division by zero or invalid operand.

The −ieee option must be specified when compiling the main program unit, and its effect is global. The
default mode is −ieee=stop. For more details see the IEEE 754 Arithmetic Support section.

−info Request output of information messages. The default is to suppress these messages.

−kind=option
Specify the kind numbering system to be used; option must be one of byte or sequential.

For −kind=byte, the kind numbers for INTEGER, REAL and LOGICAL will match the number of bytes of
storage (e.g., default REAL is 4 and DOUBLE PRECISION is 8). Note that COMPLEX kind numbers are the same
as its REAL components, and thus half of the total byte length in the entity.

For −kind=sequential (the default), the kind numbers for all datatypes are numbered sequentially from 1,
increasing with precision (e.g., default REAL is 1 and DOUBLE PRECISION is 2).

This option does not affect the interpretation of byte-length specifiers (an extension to Fortran 77).

−lx Link with library libx.a. The linker will search for this library in the directories specified by −Ldir options
followed by the normal system directories (see the ld(1) command).

−Ldir Add dir to the list of directories for library files (see the ld(1) command).

−M Produce module information files (.mod files) only. This option is equivalent to −otype=mod .

−max parameter size=N
Set the maximum size of a PARAMETER to N MB (megabytes). N must be in the range 1 to 1048576 (1MB
to 1TB); the default is 50 MB.

4

−maxcontin=N
Increase the limit on the number of continuation lines from 255 to N. This option will not decrease the
limit below the standard number.

−mdir dir
Write any module information (.mod) files to directory dir instead of the current working directory.

−mismatch
Downgrade consistency checking of procedure argument lists so that mismatches produce warning messages
instead of error messages. This only affects calls to a routine which is not in the current file; calls to a
routine in the file being compiled must still be correct. This option disables −C=calls.

−mismatch all
Further downgrade consistency checking of procedure argument lists so that calls to routines in the same
file which are incorrect will produce warnings instead of error messages. This option disables −C=calls.

−mtrace Trace memory allocation and deallocation. This option is a synonym for −mtrace=on.

−mtrace=trace opt list
Trace memory allocation and deallocation according to the value of trace opt list, which must be a comma
separated list of one or more of:

address (display addresses),

all (all options except for off),

line (display file/line info if known),

off (disable tracing output),

on (enable tracing output),

paranoia (protect memory allocator data structures against the user program),

size (display size in bytes) or

verbose (all options except for off and paranoia).

This option should be specified during both compilation and linking, and is incompatible with the −gc
option. For more details see the Memory Tracing section.

−nan Initialise REAL and COMPLEX variables to IEEE Signalling NaN, causing a runtime crash if the values are
used before being set. This affects local variables, module variables, and INTENT(OUT) dummy arguments
only; it does not affect variables in COMMON or EQUIVALENCE.

−nihongo
Produce compiler messages in Japanese (using Shift-JIS encoding).

−no underflow warning
Suppress the warning message that normally appears if a floating-point underflow occurred during execution.
This option is only effective if specified during the link phase.

−nocheck modtime
Do not check for .mod files being out of date.

−nomod Suppress module information (.mod) file production. Combining this with −M will produce no output
(other than error and warning messages) at all, equivalent to −otype=none.

−noqueue
If no licence for the compiler is immediately available, exit with an error instead of queueing for it.

−o output
Name the output file output instead of the default. If an executable is being produced the default is a.out;
otherwise it is file.o with the -c option, file.c with the -S option, and file.f, file.f90 or file.f95 with the -F
option, where file is the base part of the source file (i.e. with the suffix removed).

−O Normal optimisation, equivalent to −O2 .

−ON Set the optimisation level to N. The optimisation levels are:

−O0 No optimisation. This is the default, and is recommended when debugging.

−O1 Minimal quick optimisation.

5

−O2 Normal optimisation.

−O3 Further optimisation.

−O4 Maximal optimisation.

−Oassumed
This is a synonym for −Oassumed=contig .

−Oassumed=shape
Optimises assumed-shape array dummy arguments according to the value of shape, which must be one of

always contig
Optimised for contiguous actual arguments. If the actual argument is not contiguous a runtime
error will occur (the compiler is not standard-conforming under this option).

contig Optimised for contiguous actual arguments; if the actual argument is not contiguous (i.e. it is
an array section) a contiguous local copy is made. This may speed up array section accessing
if a sufficiently large number of array element or array operations is performed (i.e. if the cost
of making the local copy is less than the overhead of discontiguous array accesses), but usually
makes such accesses slower. Note that this option does not affect dummy arguments with the
TARGET attribute; these are always accessed via the dope vector.

section Optimised for low-moderate accesses to array section (discontiguous) actual arguments. This is
the default.

Note that CHARACTER arrays are not affected by these options.

−Oblock=N
Specify the dimension of the blocks used for evaluating the MATMUL intrinsic. The default value (only for
−O1 and above) is system and datatype dependent.

−Onopropagate
Disable the optimisation of constant propagation. This is the default for −O1 and lower.

−Opropagate
Enable the optimisation of constant propagation. This is the default for −O2 and higher.

−Orounding
Specify that the program does not alter the default rounding mode. This enables the use of faster code for
the ANINT intrinsic.

−Ounroll=N
Specify the depth to which simple loops and array operations should be unrolled. The default is no unrolling
(i.e. a depth of 1) for −O0 and −O1 , and a depth of 2 for −O and higher optimisation levels. It can be
advantageous to disable the Fortran compiler’s loop unrolling if the C compiler normally does a very good
job itself — this can be accomplished with −Ounroll=1 .

−Ounsafe
Perform possibly unsafe optimisations that may depend on the numerical stability of the program.

−openmp
Recognise OpenMP directives and link with the OpenMP support library. For more details see the OpenMP
Support section.

−otype=filetype
Specify the type of output file required to filetype, which must be one of

c (C source file),
exe (executable file),
fortran (Fortran source file),
mod (module information file),
none (no output file),
obj (object file).

The −c, −F and −M options are equivalent to −otype=obj , −otype=Fortran and −otype=mod respectively.

−pg Compile code to generate profiling information which is written at run-time to an implementation-dependent
file (usually gmon.out or mon.out). An execution profile may then be generated using gprof. This option
must be specified for compilation and linking and may be unavailable on some implementations.

6

−pic Produce position-independent code (small model), for use in a shared library. If the shared library is too
big for the small model, use −PIC .

−PIC Produce position-independent code (large model), for use in a shared library.

−Qpath pathname
Change the compiler library pathname from its default location to pathname. (The default location on
Solaris is usually ‘/opt/NAG Fortran/lib’.)

−r8 Double the size of default REAL and COMPLEX, and on machines for which quadruple-precision floating-point
arithmetic is available, double the size of DOUBLE PRECISION (and the non-standard DOUBLE COMPLEX).
REAL or COMPLEX specified with explicit KIND numbers or byte lengths are unaffected — but since the KIND
intrinsic returns the correct values, COMPLEX(KIND(0d0)) on a machine with quad-precision floating-point
will correctly select quad-precision COMPLEX.

This has no effect on INTEGER sizes, and so the compiler is not standard-conforming in this mode.

Note: This option has been superseded by the −double option which doubles the size of all numeric data
types.

−s Strip symbol table information from the executable file. This option is only effective if specified during the
link phase.

−S Produce assembler (actually C source code). The resulting .c file should be compiled with the NAG Fortran
compiler, not with the C compiler directly. This option is equivalent to −otype=c.

−save This is equivalent to inserting the SAVE statement in all subprograms which are not declared RECURSIVE,
thus causing all non-automatic local variables in such subprograms to be statically allocated.

−strict95
Produce obsolescence warning messages for use of ‘CHARACTER*’ syntax. This message is not produced by
default since many programs contain this syntax.

−target=machine
Specify the machine for which code should be generated and optimised. For Sun/SPARC, machine may be
one of

V7 SPARCstation 1 et al,

V8 SPARCstation 2 et al,

super SuperSPARC,

ultra UltraSPARC or

native the current machine.

The default is to compile for SPARC V7.

Note that programs compiled for later versions of the architecture may not run, or may run much more
slowly, on an earlier machine.

−tempdir directory
Set the directory used for the compiler’s temporary files to directory. The default is to use the directory
named by the TMPDIR environment variable, or if that is not set, /tmp.

−thread safe
Compile code for safe execution in a multi-threaded environment. This must be specified when compiling
and also during the link phase. It is incompatible with −gc.

−time Report execution times for the various compilation phases.

−u Specify that IMPLICIT NONE is in effect by default, unless overridden by explicit IMPLICIT statements.

−unsharedrts
Bind with the unshared (static) version of the Fortran runtime system; this allows a dynamically linked
executable to be run on systems where the NAG Fortran Compiler is not installed. This option is only
effective if specified during the link phase.

−v Verbose. Print the name of each file as it is compiled.

7

−V Print version information about the compiler.

−w Suppress all warning messages. This option is a synonym for −w=all .

−w=class
Suppress the warning messages specified by class, which must be one of all, alloctr, obs, ques, uda, uei,
uep, uip, ulv, unreffed, unused, usf, usy, x77 or x95.

−w=all suppresses all warning messages;

−w=alloctr suppresses warning messages about the use of allocatable components, dummy arguments
and functions;

−w=obs suppresses warning messages about the use of obsolescent features;

−w=ques suppresses warning messages about questionable usage;

−w=uda suppresses warning messages about unused dummy arguments;

−w=uei suppresses warning messages about unused explicit imports;

−w=uep suppresses warning messages about unused external procedures;

−w=uip suppresses warning messages about unused intrinsic procedures;

−w=ulv suppresses warning messages about unused local variables;
−w=unreffed

suppresses warning messages about variables set but never referenced;

−w=unused suppresses warning messages about unused entities — this is equivalent to ‘−w=uda −w=uei
−w=uep −w=uip −w=ulv −w=usf −w=usy ’;

−w=usf suppresses warning messages about unused statement functions;

−w=usy suppresses warning messages about unused symbols;

−w=x77 suppresses extension warnings for common extensions to Fortran 77 — these are TAB format,
byte-length specifiers and Hollerith constants;

−w=x95 suppresses extension warnings for extensions to Fortran 95.

−Woptions
The −W option can be used to specify the path to use for a compilation component or to pass an option
directly to such a component. The possible combinations are:

−W0=path Specify the path used for the Fortran Compiler front-end. Note that this does not affect the
library directory; the −Qpath option should be used to specify that.

−Wc=path Specify the path to use for invoking the C compiler; this is used both for the final stage of
compilation and for linking.

−Wc,option Pass option directly to the host C compiler when compiling (producing the .o file). Multiple
options may be specified in a single −Wc, option by separating them with commas.

−Wl=path Specify the path to use for invoking the linker (producing the executable).

−Wl,option Pass option directly to the host C compiler when linking (producing the executable). Mul-
tiple options may be specified in a single −Wl, option by separating them with commas.
A comma may be included in an option by repeating it, e.g. −Wl,-filelist=file1,,file2,,file3
becomes the linker option −filelist=file1,file2,file3 .

−Wp=path Specify the path to use for invoking the fpp preprocessor.
−Wp,option

Pass option directly to fpp when preprocessing.

−wmismatch=proc-name-list
Specify a list of external procedures for which to suppress argument data type and arrayness consistency
checking. The procedure names should be separated by commas, e.g. −wmismatch=p one,p2 . Unlike
the −mismatch option, this only affects data type and arrayness checking, and no warning messages are
produced.

−xlicinfo
Report on the availability of licences for the compiler instead of compiling anything.

−xs Store the symbol tables in the executable (otherwise debugging is only possible if the object files are kept).

8

6 Files

file.a Library of object files.

file.c C source file.

file.f Fortran source file in fixed format (obsolete).

file.f90 Fortran source file in free format.

file.f95 Fortran source file in free format.

file.F Preprocessor source file for fixed-form Fortran (obsolete).

file.ff90 Preprocessor source file for free-form Fortran.

file.F90 Preprocessor source file for free-form Fortran.

file.ff95 Preprocessor source file for free-form Fortran.

file.F95 Preprocessor source file for free-form Fortran.

name.mod Compiled module information file; name is the name of the module in lower case.

file.o Object file

/opt/NAG Fortran/lib
Default NAG Fortran Compiler library directory on Sun Solaris (see −Qpath); referred to as library
hereafter.

/usr/local/lib/NAG Fortran
Default NAG Fortran Compiler library directory on other Unix-based operating systems.

C:\Program Files\NAG\EFBuilder 5.3\nagfor\lib
Default NAG Fortran Compiler library directory on 32-bit Windows.

C:\Program Files (x86)\NAG\EFBuilder 5.3\nagfor\lib
Default NAG Fortran Compiler library directory on 64-bit Windows.

library/ f90 iostat.f90
Source code for the f90 iostat module.

library/ f90 kind.f90
Source code for the f90 kind module.

library/ f90 stat.f90
Source code for the f90 stat module.

library/ f90 util.f90
A sample Fortran 90 program that displays implementation-specific information

library/ iso fortran env.f90
Source code for the iso fortran env module.

library/nagfmcheck.f90
Source code for the nagfmcheck program, see the Memory Tracing section.

7 Compilation Messages

The messages produced by the NAG Fortran Compiler itself during compilation are intended to be self-explanatory.
The linker, or more rarely the host C compiler, may produce occasional messages.

Messages produced by the compiler are classified by severity level; these levels are:

Info informational message, noting an aspect of the source code in which the user may be interested.

Warning the source code appears likely to be in error.

9

Questionable
some questionable usage has been found in the source code which may indicate a programming error.
This has the same severity as “warning”.

Extension some non-standard-conforming source code has been detected but has successfully been compiled as an
extension to the language. This has the same severity as “warning”.

Obsolescent
some archaic source code has been detected which although standard-conforming was classified as obso-
lescent by the Fortran 95 standard. This has the same severity as “warning”.

Deleted feature used
a feature that was present in Fortran 90 but deleted from the Fortran 95 standard was used. This has
the same severity as “warning”.

Error the source code does not conform to the Fortran standard or does not make sense. Compilation continues
after recovery.

Fatal a serious error in the user’s program from which the compiler cannot recover, the compilation is imme-
diately terminated.

Panic an internal inconsistency is found by one of the compiler’s self-checks; this is a bug in the compiler itself
and NAG should be notified.

8 Compiler Limits

Item Limit
Maximum INCLUDE file nesting 20
Maximm number of INCLUDE file references per compilation 2047
Maximum DO loop nesting level 199
Maximum CASE construct nesting level 30
Maximum DATA-implied-DO loop nesting 99
Maximum array-constructor-implied-DO loop nesting 99
Maximum number of dummy arguments 32767
Maximum number of arguments to MIN and MAX 100
Maximum character length 2147483647
Maximum array size (32-bit systems) 2147483647 bytes
Maximum array size (64-bit systems) 64GB
Maximum unit number 2147483647
Maximum I/O record length 2147483647

9 Input/Output Information

Item Value
Standard error (stderr) unit number 0
Standard input (stdin) unit number 5
Standard output (stdout) unit number 6
Default maximum record length for formatted output 1024 characters
Default maximum record length for unformatted output 2147483647 bytes

The default directory used for files opened with STATUS=’SCRATCH’ is ‘/tmp’ on Unix and the Windows temporary
directory on Windows. This default may be overridden with the TMPDIR environment variable.

10 OpenMP Support

The most commonly-used features of OpenMP 3.0 are supported. The following table describes the level of support
for each OpenMP directive in the initial 5.3 release.

10

Executable directive Level of support
PARALLEL Supported except for the COPYIN clause.
DO Supported except for COLLAPSE, LASTPRIVATE and ORDERED.
SECTIONS Supported except for LASTPRIVATE.
SINGLE Fully supported.
MASTER Fully supported.
WORKSHARE Not supported.
PARALLEL DO Supported except as noted for PARALLEL and DO.
PARALLEL SECTIONS Fully supported.
PARALLEL WORKSHARE Not supported.
TASK Not supported.
MASTER Fully supported.
CRITICAL Fully supported.
BARRIER Fully supported.
TASKWAIT Not supported.
ATOMIC Fully supported.
FLUSH Fully supported.
ORDERED Not supported.
Data directive/clauses Level of support
THREADPRIVATE Not supported.
DEFAULT Fully supported.
SHARED Fully supported.
PRIVATE Fully supported.
FIRSTPRIVATE Supported in PARALLEL directives.
LASTPRIVATE Not supported.
REDUCTION Fully supported.
COPYIN Not supported.
COPYPRIVATE Not supported.

All the procedures in section 3.2 of the OpenMP standard are supported; these are omp set num threads,
omp get num threads, omp get max threads, omp get thread num, omp get num procs, omp in parallel,
omp set dynamic, omp get dynamic, omp set nested, omp get nested, omp set schedule, omp get schedule,
omp get thread limit, omp set max active levels, omp get max active levels, get level,
omp get ancestor thread num, omp get team size and omp get active level.

The lock procedures in section 3.3 of the OpenMP standard are not supported in release 5.3.

The timing routines in section 3.4 of the OpenMP standard are supported; these are omp get wtime and omp get wtick.

When using the IEEE arithmetic support modules, the IEEE modes (rounding, halting and underflow) are propagated
into spawned OpenMP threads at the beginning of a PARALLEL construct, and any IEEE flag that are set by an OpenMP
thread is passed back to the parent thread at the end of the PARALLEL construct.

The following table lists the OpenMP environment variables with their default values and, if applicable, their limits.

Environment Variable Default Limits
OMP NUM THREADS 1 1-32768
OMP DYNAMIC False true or false
OMP NESTED False true or false
OMP STACKSIZE 0 <1GB (32-bit) or 16GB (64-bit)
OMP WAIT POLICY None active or passive
OMP MAX ACTIVE LEVELS 1 1-64
OMP THREAD LIMIT 32768 1-32768

Note that although the NAG runtime supports up to 32768 threads, operating system limits may prevent usage of so
many.

OpenMP is not compatible with the −C=undefined option.

11

11 Automatic File Preconnection

All logical unit numbers are automatically preconnected to specific files. These files need not exist and will only be
opened or created if they are accessed with READ or WRITE without an explicit OPEN. By default the specific filename
for unit n is fort.n; however if the environment variable FORTnn exists its value is used as the filename. Note that
there are two digits in this variable name, e.g. the variable controlling unit 1 is FORT01 whereas the default filename
is ‘fort.1’ (unless the prefix has been changed, see the description of module F90 PRECONN IO).

A file preconnected in this manner is opened with ACCESS=’SEQUENTIAL’. If the initial READ or WRITE is an unformatted
i/o statement, it is opened with FORM=’UNFORMATTED’ otherwise it is opened with FORM=’FORMATTED’. By default a
formatted connection is opened with BLANK=’NULL’ and POSITION=’REWIND’ (see module F90 PRECONN IO).

Automatic preconnection applies only to the initial use of a logical unit; once CLOSEd the unit will not be reconnected
automatically but must be explicitly OPENed.

Note that this facility means that it is possible for a READ or WRITE statement with an IOSTAT= clause to receive an
i/o error code associated with the implicit OPEN.

12 IEEE 754 Arithmetic Support

If no floating-point option is specified, any floating divide-by-zero, overflow or invalid operand exception will cause
the execution of the program to be terminated (with an informative message and usually a core dump). Occurrence
of floating underflow may be reported on normal termination of the program. On hardware supporting IEEE 754
standard arithmetic gradual underflow with denormalised numbers will be enabled. Note that this mode of operation
is the only one available on hardware which does not support IEEE 754.

If the −ieee=full option is specified, non-stop arithmetic is enabled; thus REAL variables may take on the values
+Infinity, −Infinity and NaN (Not-a-Number). If any of the floating exceptions listed above are detected by the
hardware during execution, this fact will be reported on normal termination. The −ieee=full option must be specified
when compiling the main program and has global effect.

If the −ieee=nonstd option is specified, floating-point exceptions are handled in the default manner (i.e. execution
is terminated). However, gradual underflow is not enabled, so results which would have produced a denormalised
number produce zero instead. This option can only be used on hardware for which this mode of operation is faster.
Like −ieee=full , the −ieee=nonstd option must be specified when compiling the main program and has global effect.

13 Random Number Algorithm

The random number generator supplied as the intrinsic subroutine RANDOM NUMBER is the “Mersenne Twister”.

14 Automatic Garbage Collection

The −gc option enables use of the runtime garbage collector. It is necessary to use this option during the link phase
for it to have effect; specifying it additionally during the compilation phase can result in improved performance.

The supplied Technical Information note (TECHINFO) lists whether garbage collection is available for your system.
If it is available, there will be a file ‘gc.o’ in the compiler’s library directory.

The collector used is based on version 5.3 of the publicly available general purpose garbage collecting storage allocator
of Hans-J Boehm, Alan J Demers and Xerox Corporation, described in “Garbage Collection in an Uncooperative
Environment” (H Boehm and M Weiser, Software Practice and Experience, September 1988, pp 807-820).

The copyright notice attached to their latest version is as follows:

Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.

12

Copyright 1996-1999 by Silicon Graphics. All rights reserved.
Copyright 1999 by Hewlett-Packard Company. All rights reserved.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program
for any purpose, provided the above notices are retained on all copies.
Permission to modify the code and to distribute modified code is granted,
provided the above notices are retained, and a notice that the code was
modified is included with the above copyright notice.

Note that the “NO WARRANTY” disclaimer refers to the original copyright holders Boehm, Demers, Xerox Corpo-
ration, Silicon Graphics and Hewlett-Packard Company. The modified collector distributed in binary form with the
NAG Fortran Compiler is subject to the same warranty and conditions as the rest of the NAG Fortran compilation
system.

The module F90 GC is provided; it contains functions and variables that can control the behaviour of the garbage
collector.

15 Memory Tracing

Tracing of memory allocation and deallocation is provided by the −mtrace option. Control is provided over whether
the address, size, and line number of each allocation is displayed, or the tracing output can be suppressed entirely. A
“paranoia” mode is provided where the memory allocator protects its data structures against inadvertent modification
by the user program.

Runtime environment variables may be used to override the tracing options a program was built with, and to specify
where to write the tracing output. These are only operative if the program was built with some tracing option;
−mtrace=off will build a program with the tracing-capable memory allocator.

If −mtrace=off is not specified, use of any −mtrace option will implicitly do a −mtrace=on.

Basic tracing produces a message to the memory tracing file (normally standard error) for each allocation and deal-
location, including those for automatic variables, i/o buffers and compiler-generated temporaries. Each allocation is
numbered sequentially; the first three items are the i/o buffers for units 0, 5 and 6 (standard error, standard input
and standard output).

All −mtrace= suboptions may be overridden at run time by the NAGFORTRAN MTRACE OPTIONS environment variable,
which should be set to the required trace opt list (e.g. ‘on,size’). The memory tracing file may be specified at run
time by the NAGFORTRAN MTRACE FILE environment variable.

The −mtrace option must be specified when linking, and is incompatible with −gc. Additionally, line number infor-
mation is only available for those files compiled with −mtrace=line.

The nagfmcheck program can be used to check the output from the −mtrace option. It is designed to be used as a filter.
Any lines that do not look like memory tracing output are ignored. It reports to standard output any errors it detects
such as deallocating something twice, deallocating something that was never allocated, or deallocating something with
a size different from that with which it was allocated. It also reports any apparent memory leaks, though this is less
useful if the program terminated prematurely.

16 Undefined Variable Detection

Use of undefined variables can be detected with the −C=undefined option. Program units compiled with this option
are incompatible with program units compiled without this option (i.e. the whole program must be compiled the same
way). For this reason, −C=undefined is not part of −C or −C=all .

Currently, there are a number of other limitations on the use of −C=undefined .

13

1. It is incompatible with pointers in an initialised COMMON.

2. All intrinsic modules are available, but the ISO C BINDING module can only be used with all-Fortran programs
as the option makes changes to the ABI.

3. Internal READ from a CHARACTER array requires the entire specified array subobject to be “defined”, even those
elements corresponding to records not actually read.

4. Internal WRITE to a CHARACTER array is considered to define the entire specified array subobject, even those
elements corresponding to records not actually written.

5. Certain intrinsic functions require the entirety of their arguments to be defined, even if some portions are not
actually required for the value of the function. For example, the PAD argument to RESHAPE when no padding is
actually required, and elements of the ARRAY argument to PACK that correspond to false elements of the MASK.

6. It is incompatible with the use of OpenMP directives.

17 Data Types

The table below lists the data types provided by the NAG Fortran Compiler together with their kind numbers. There
are two possibilities for the KIND numbers: the default mode of operation (which may be specified explicitly by the
−kind=sequential option) and the “byte” numbering scheme (specified by the −kind=byte option).

Type KIND Number KIND Number Description
Name (kind=sequential) (kind=byte)
REAL 1 4 Single precision floating-point
REAL 2 8 Double precision floating-point
REAL 3 16 Quadruple precision floating-point

COMPLEX 1 4 Single precision complex
COMPLEX 2 8 Double precision complex
COMPLEX 3 16 Quadruple precision complex

LOGICAL 1 1 Single byte logical
LOGICAL 2 2 Double byte logical
LOGICAL 3 4 Default logical
LOGICAL 4 8 Eight byte logical

INTEGER 1 1 8-bit integer
INTEGER 2 2 16-bit integer
INTEGER 3 4 32-bit (default) integer
INTEGER 4 8 64-bit integer

CHARACTER 1 1 ASCII or ISO 8859-1 character
CHARACTER 2 2 JIS X 0213 character
CHARACTER 3 3 Unicode (UCS-2) character
CHARACTER 4 4 ISO 10646 (UCS-4) character

Note that on all machines except Sun Solaris with the SunPro C compiler, quadruple precision is actually “double
double” precision; this provides nearly twice the precision of Double precision but with a reduced exponent range.

The F90 KIND module contains named parameters useful for specifying which kind you want regardless of whether the
numbering system is “sequential” or “byte”.

Additional intrinsic modules built into the NAG Fortran Compiler are described in the “nag modules” document.

18 Modules

To use a module it must be previously compiled, or must be defined in the file prior to its use. When separately
compiling a module the −c option should be specified.

14

Compiling a module creates a ‘.mod’ file and a ‘.o’ file. The ‘.mod’ file is used by the compiler at compile time to
provide information about module contents, the ‘.o’ file (if generated) contains the code of any module procedures and
must be specified when creating an executable file.

Note that the name of the ‘.mod’ file will be the name of the module, the ‘.o’ file will be named after the original
source file.

When a previously compiled module is USEd the NAG Fortran Compiler attempts to find its source file and, if that
is successful, checks the modification times producing a warning message if the ‘.mod’ file is out of date.

19 Runtime Environment Variables

The following variables control the runtime environment for programs compiled with the NAG Fortran Compiler.

NAGFORTRAN MTRACE FILE
Programs compiled using any −mtrace= option will write the memory trace to this file. The default is
standard error.

NAGFORTRAN MTRACE OPTIONS
Changes the memory tracing options for programs compiled using any −mtrace= option.

NAGFORTRAN RUNTIME ERROR FILE
Runtime error messages will be written to this file. The default is standard error.

NAGFORTRAN RUNTIME LANGUAGE
Controls the language used for runtime error messages. This may be ‘English’ or ‘Japanese’ (not case-
sensitive); the default is English.

TMPDIR Controls the directory used for scratch files (the default is system-dependent).

20 Debugging

For operating systems other than Windows a Modern Fortran-aware debugger might be available as dbx90; see
TECHINFO.txt for details.

In general, host system debuggers, such as dbx or gdb, may be used successfully on Fortran code as the names of
the original source files, plus line numbers, are passed through to the intermediate C files. In using such debuggers it
should be noted that most local variables have an underscore appended to their names. It may be useful to look at
the intermediate C code when debugging; this is produced by the −S option.

21 Producing a Call Graph

The call graph generator takes a set of Fortran source files and produces a call graph with optional index and called-by
tables. C files and fpp-processed files are not handled.

The call graph generator understands the following compiler options with the same meaning: −132 , −compatible,
−dcfuns, −double, −dryrun, −dusty , −encoding , −english, −f2003 , −f2008 , −f95 , −fixed , −free, −help, −hollerith io,
−hpf , −I , −indirect , −info, −kind , −maxcontin, −mismatch, −mismatch all , −nihongo, −nocheck modtime, −nomod ,
−o, −Qpath, −r8 , −strictf95 , −u, −v , −V , −w and −xlicinfo.

The “@filename” syntax may also be used, with the same effect as the “−indirect filename” option.

The call graph is written to the file specified by the −o option, or to standard output if no −o option is specified.

The following additional options control the output produced.

−calledby
Produce a “called-by” table showing, for each routine, the routines that call it directly or indirectly. This
is produced at the end of the output.

15

−indent=N
Indent by N for each level in the graph, up to the maximum. The default is −indent=4 .

−indent max=N
The maximum indentation is N. The default is −indent max=70 .

−index Produce an alphabetic index listing, for each routine, the line of the call graph where the routine first
appears. This follows the call graph itself and precedes the called-by table (when the −calledby option is
used).

−show entry
Show ENTRY point names in the call graph; without this option, calls to an ENTRY point are shown as calls
to the containing subprogram.

−show generic
If a call is via a generic identifier, show the generic identifier in the call graph.

−show host
Show the host scope names for calls to internal and module procedures.

−show pclass
Show the class of each procedure (e.g. ‘module’, ‘internal’, ...).

−show rename
If a called procedure was renamed on a USE statement, show the renaming.

22 Dependency Analysis

The dependency analyser takes a set of Fortran source files and produces dependency information in the form specified.
C files and fpp-processed files are not handled.

The dependency analyser understands the following compiler options with the same meaning: −132 , −dryrun,
−english, −fixed , −free, −help, −hpf , −I , −indirect , −nihongo, −o, −Qpath, −tempdir , −v and −V . The “@file-
name” syntax may also be used with the same effect as the “−indirect filename” option.

The output form is controlled by the −otype=type option, where type is one of:

blist (the filenames as an ordered build list),
dfile (the dependencies in Makefile format, written to separate file.d files),
info (the dependencies as English descriptions) or
make (the dependencies in Makefile format).

The default is −otype=info. If −otype=dfile is specified, no −o option is permitted; otherwise, the result is written to
the file specified by the −o option or to standard output if no −o option is specified.

23 Source File Polishing

The polisher takes a set of Fortran source files, which may be in fixed or free form, and produces a free form “polished”
version of each file. C files and fpp-processed files are not handled.

The polisher understands the following compiler options with the same meaning: −132 , −encoding , −english, −fixed ,
−free, −help, −I , −indirect , −info, −nihongo, −noqueue, −o, −Qpath, −tempdir , −u, −v , −V , −w and −xlicinfo.

The polished output is written to the file specified by the −o option, or to the same filename with the extension
replaced by ‘.f90 pol’ if no −o option is specified. The output file cannot have the same name as the input file.

The following additional options control the operation of the polisher:

−alter comments
Enable options to alter comments; without this option, any options that would otherwise alter the comments
are ignored.

16

−blank cmt to blank line
Turn comment lines that have no text (other than the comment-initiating character) into plain blank lines;
this is the default if the −alter comments option is set.

−blank line after decls
Ensure that there is a blank line after the declarations and before the first executable statement; this is the
default.

−bom=X
Specify whether to write a Unicode Byte-Order Mark at the beginning of the output file; X must be one
of Asis (same as the input file), Insert (insert a byte-order mark) or Remove (remove any byte-order
mark). This option only has effect if the input file is known to be in UTF-8 encoding, either because it
begins with a byte-order mark or the −encoding=UTF8 option was used. The default is −bom=Asis.

−break long comment word
If a comment line will be split into two lines, the comment may be broken in the middle of a long word.

−delete all comments
Delete all comments (if the −alter comments option is set).

−delete blank lines
Delete blank lines and comment lines that have no text (other than the comment-initiating character), if
the −alter comments option is set.

−delete unused labels
Delete labels that are never referenced; this is the default.

−format start=N
If renumbering FORMAT statements in a separate sequence, the first FORMAT statement will be N ; the default
is −format start=90000 .

−format step=N
If renumbering FORMAT statements in a separate sequence, the step from one label to the next will be N ;
the default is −format step=10 . Note that this may be negative (but not zero).

−idcase=X
Set the case to use for identifiers; X must be one of C (for Capitalised), L (for lowercase) or U (for
UPPERCASE); the default is −idcase=L.

−indent=N
Indent statements within a construct by N spaces from the current indentation level; the default is
−indent=2 .

−indent comment marker
When indenting comments, the comment-initiating character should be indented to the indentation level;
this is the default.

−indent comments
Indent comments; this is the default if the −alter comments option is set. The result is also affected by the
−indent comment marker option.

−indent continuation=N
Indent continuation lines by an additional N spaces; the default is −indent continuation=2 .

−indent max=N
Set the maximum indentation level to N spaces; the default is −indent max=60 . The value must be at
least 10 less than the output line length (−width=).

−inline comment indent=N
Set the indentation level for inline comments to column N ; the default is −inline comment index=35 .

−keep blank lines
Do not delete blank lines or comment lines with no text; this is the opposite of −delete blank lines and is
the default.

−keep comments
Do not delete non-blank comment lines; this is the opposite of −delete comments and is the default.

17

−kind keyword=X
Specifies how to handle the KIND= specifier in declarations; X must be one of Asis (take no action but
preserve the input status), Insert (insert KIND= if not present), or Remove (remove KIND= if present); the
default is −kind keyword=Asis.

−kwcase=X
Set the case to use for language keywords; X must be one of C (for Capitalised), L (for lowercase) or U
(for UPPERCASE); the default is −kwcase=C .

−label after indent
Indent labels; this is the opposite to −label before indent .

−label before indent
Output the statement label, if any, before indenting the statement; this is the default.

−leave formats in place
Leave FORMAT statements in the same position as they are in the input file; this is the opposite of
−move formats to end , and is the default.

−margin=N
Set the left margin (initial indent) to N. The value must be at least 10 less than the output line length
(−width=).

−name scopes=X
Specify whether to add optional keywords and scope names to the END or END TYPE statement for a scope;
X must be one of Asis (leave as is), Insert (insert keywords and/or names) or Remove (remove op-
tional keywords and names). This option also applies to the END INTERFACE statement. The default is
−name scopes=Insert .

−noalter comments
Do not alter comments in any way; this is the default.

−noblank cmt to blank line
Do not turn blank comments to blank lines.

−noblank line after decls
Do not insert a blank line between the last declaration and the first executable statement.

−nobreak long comment word
If a comment line will be split into two lines, do not break the comment in the middle of a long word; this
is the default.

−noindent comment marker
Place the comment-initiating character for a comment line in column 1.

−noindent comments
Indent the text of a comment line.

−norenumber
Do not renumber statement labels.

−noseparate format numbering
When renumbering statement labels, use a single sequence for both FORMAT and non-FORMAT statements;
this is the default.

−noterminate do with enddo
Do not change DO loop terminating statements.

−relational=X
Specifies the form to use for relational operators, X must be either F77- (use .EQ., .LE., etc.) or F90+
(use ==, <=, etc.); the default is −relational=F90+.

−renumber
Renumber statement labels; this is the default.

−renumber start=N
When renumbering statement labels, the first label will be N ; the default is −renumber start=100 .

−renumber step=N
When renumbering statement labels, the step from one label to the next will be N ; the default value is
−renumber step=10 .

18

−separate format numbering
When renumbering statement labels, renumber FORMAT statements in a separate sequence from non-FORMAT
statements.

−terminate do with enddo
Change the terminating statements of all DO loops so that each loop ends with an ENDDO statement; this is
the default.

−width=N
Set the maximum length of the text on each output line to N ; the default is −width=78 . Note that in the
case of continuation lines, an additional two characters (‘ &’) will be produced after the last text on a line
and this may take the line length over the limit. The width must be at least 10 more than the left margin
(−margin=) and the maximum indent (−indent max=). The maximum width setting is 1024, however
values higher than 130 will produce output that does not conform to the Fortran standard.

24 See Also

f90 gc(3), f90 iostat(3), f90 kind(3), f90 preconn io(3), f90 stat(3), f90 unix dir(3), f90 unix dirent(3),
f90 unix env(3), f90 unix errno(3), f90 unix file(3), f90 unix proc(3), ieee arithmetic(3),
ieee exceptions(3), ieee features(3), iso c binding(3), iso fortran env(3), nag modules(3), nagfmcheck(1).

25 Bugs

Please report any bugs found to ‘support@nag.co.uk’ or ‘support@nag.com’, along with any suggestions for improve-
ments.

26 Author

Malcolm Cohen, Nihon Numerical Algorithms Group KK, Tokyo, Japan.

19

