
NAG Fortran Compiler Release 5.3 Release Note

July 31, 2012

1 Introduction

Release 5.3 of the NAG Fortran Compiler contains many improvements to the compiler and additions to
the Fortran 2003 and Fortran 2008 language features.

Licence keys for Releases 5.1 and 5.2 will not work with Release 5.3; contact NAG to obtain a new licence
key.

See KLICENCE.txt for more information about Kusari Licence Management.

1.1 Compatibility with Release 5.2

Release 5.3 of the NAG Fortran Compiler is fully compatible with Release 5.2.

1.2 Compatibility with Release 5.1

Release 5.2 of the NAG Fortran Compiler is compatible with NAGWare f95 Release 5.1 except that:

• programs or libraries that use the CLASS keyword, or which contain types that will be extended, need
to be recompiled;

• the following 64-bit platforms, when the −abi=64 option (the default) is used, are binary incompatible
and all programs and libraries need to be recompiled: NPL6A51NA, NPMI651NA.

1.3 Compatibility with Earlier Releases

Except as noted, the NAG Fortran Compiler release 5.3 is compatible with NAGWare f90 Releases 2.1 and
2.2, as well as with all NAGWare f95 Releases from 1.0 to 5.0, except as noted below.

The following incompatibilities were introduced in Release 5.1:

• The value returned by STAT=, on an ALLOCATE or DEALLOCATE statement, may differ from the pre-5.1
value in some cases. For further information see the F90 STAT module documentation.

• Programs that used type extension (EXTENDS attribute) in 5.0 need to be recompiled.

• Formatted output for IEEE infinities and NaNs is different, and now conforms to Fortran 2003.

• List-directed output of a floating-point zero now uses F format, as required by Fortran 2003, instead
of E format.

• An i/o or format error encounted during NAMELIST input will now skip the erroneous record. This
behaviour is the same as all other formatted input operations including list-directed.

1

1.4 New Features

Release 5.3 supports OpenMP 3.0 (only when the −openmp option is used) and includes many new features
from the Fortran 2003 and Fortran 2008 standards.

This release also contains performance enhancements and other minor enhancements. Additionally, several
programming tools have been integrated into the compiler system.

2 OpenMP 3.0 Support

Support for the most commonly-used features of OpenMP 3.0 has been added. In the initial 5.3 release,
support for each directive is described in the table below.

Executable directive Level of support
PARALLEL Supported except for the COPYIN clause.
DO Supported except for COLLAPSE, LASTPRIVATE and ORDERED.
SECTIONS Supported except for LASTPRIVATE.
SINGLE Fully supported.
MASTER Fully supported.
WORKSHARE Not supported.
PARALLEL DO Supported except as noted for PARALLEL and DO.
PARALLEL SECTIONS Fully supported.
PARALLEL WORKSHARE Not supported.
TASK Not supported.
CRITICAL Fully supported.
BARRIER Fully supported.
TASKWAIT Not supported.
ATOMIC Fully supported.
FLUSH Fully supported.
ORDERED Not supported.
Data directive/clauses Level of support
THREADPRIVATE Not supported.
DEFAULT Fully supported.
SHARED Fully supported.
PRIVATE Fully supported.
FIRSTPRIVATE Supported in PARALLEL directives.
LASTPRIVATE Not supported.
REDUCTION Fully supported.
COPYIN Not supported.
COPYPRIVATE Not supported.

All the procedures in section 3.2 of the OpenMP standard are supported; these are omp set num threads,
omp get num threads, omp get max threads, omp get thread num, omp get num procs, omp in parallel,
omp set dynamic, omp get dynamic, omp set nested, omp get nested, omp set schedule,
omp get schedule, omp get thread limit, omp set max active levels, omp get max active levels,
get level, omp get ancestor thread num, omp get team size and omp get active level.

The lock procedures in section 3.3 of the OpenMP standard are not supported in this release.

The timing procedures in section 3.4 of the OpenMP standard are supported; these are omp get wtime and
omp get wtick.

2

All OpenMP environment variables are supported.

When using the IEEE arithmetic support modules, the IEEE modes (rounding, halting and underflow) are
propagated into spawned OpenMP threads at the beginning of a PARALLEL construct, and any IEEE flag
that are set by an OpenMP thread is passed back to the parent thread at the end of the PARALLEL construct.

3 Fortran 2003 Features

• FINAL subroutines have been added, to provide user-specified finalisation.

• Structure constructors can now use keywords for component selection, and can omit values for com-
ponents that have default initialisation. Using keywords it is possible to provide a single value for
the whole parent component (or another ancestor component) instead of each inherited component
individually.

• Structure constructors can be overloaded with generic functions.

• The intrinsic function EXTENDS TYPE OF.

• The intrinsic function SAME TYPE AS.

• Any kind of LOGICAL variable is now accepted in the INQUIRE statement for the EXIST=, NAMED=,
OPENED= and PENDING= specifiers.

• The intrinsic type parameter enquiries %KIND and %LEN have been added; these can be applied to
variable designators. The form variable%KIND is the same as KIND(variable), and variable%LEN is
the same as LEN(variable), except that the enquiry forms can be used even if the intrinsic function
names are not available. Also, the %LEN form returns the length in a kind that is big enough to hold
the length, this is not necessarily the same as default integer.

• All intrinsic functions are now allowed in constant expressions.

• The full ISO 10646 4-byte character set is supported; the kind is returned by the intrinsic function
reference SELECTED CHAR KIND(’ISO 10646’). As ISO 10646 defines a 2-byte subset (UCS-2) as well
as the full 4-byte characters (UCS-4), the intrinsic function SELECTED CHAR KIND also recognised the
name ’UCS 4’ for this character set.

• The ISO 10646 file encoding UTF-8 is supported; to use this, open the file with ENCODING=’UTF-8’.
Any kind of character can be written to and read from a UTF-8 file.

• The intrinsic module ISO FORTRAN ENV contains the additional scalar integer constant
IOSTAT INQUIRE INTERNAL UNIT. A later release of the NAG Fortran Compiler will support defined
input/output; at that time, the value of IOSTAT INQUIRE INTERNAL UNIT identifies the IOSTAT= error
value that will result from using INQUIRE in a child input/output statement for an internal file.

4 Fortran 2008 Features

• The BLOCK construct has been added; this construct allows declarations of entities within executable
code. For example,

Do i=1,n
Block

Real tmp
tmp = a(i)**3

3

If (tmp>b(i)) b(i) = tmp
End Block

End Do

Here the variable tmp has its scope limited to the BLOCK construct, so will not affect anything outside
it. This is particularly useful when including code by INCLUDE or by macro preprocessing.

All declarations are allowed within a BLOCK construct except for COMMON, EQUIVALENCE, IMPLICIT,
INTENT, NAMELIST, OPTIONAL and VALUE; also, statement function definitions are not permitted. BLOCK
constructs may be nested; like other constructs, branches into a BLOCK construct from outside are not
permitted.

• In a structure constructor, the value for an allocatable component may be omitted: this has the same
effect as specifying NULL().

• In a STOP statement, the stop-code may be any scalar constant expression of type integer or default
character. (This also applies to the PAUSE statement, but that statement is no longer standard Fortran.)

• When the −f2008 option is in effect, ENTRY statements will be reported as obsolescent.

• The intrinsic module ISO FORTRAN ENV contains the additional scalar integer constants INT8, INT16,
INT32, INT64, REAL32, REAL64 and REAL128; these supply the kind type parameter values for integer
and real kinds with the indicated bit sizes.

• The intrinsic module ISO FORTRAN ENV contains four additional named constants that are arrays:
CHARACTER KINDS, INTEGER KINDS, LOGICAL KINDS and REAL KINDS; these list the available kind type
parameter values for each type (in no particular order).

• An empty internal subprogram part, module subprogram part or type-bound procedure part is now
permitted following a CONTAINS statement. In the case of the type-bound procedure part, an ineffectual
PRIVATE statement may appear following the unnecessary CONTAINS statement.

• A type-bound procedure declaration statement may now declare multiple type-bound procedures. For
example, instead of

PROCEDURE,NOPASS :: a
PROCEDURE,NOPASS :: b=>x
PROCEDURE,NOPASS :: c

the single statement

PROCEDURE,NOPASS :: a, b=>x, c

will suffice.

• The NEWUNIT= specifier has been added to the OPEN statement; this allocates a new unit number that
cannot clash with any other logical unit (the value will be a special negative value). For example,

INTEGER unit
OPEN(FILE=’output.log’,FORM=’FORMATTED’,NEWUNIT=unit)
WRITE(unit,*) ’Logfile opened.’

The NEWUNIT= specifier can only be used if either the FILE= specifier is also used, or if the STATUS=
specifier is used with the value ’SCRATCH’.

4

• The elemental intrinsic functions BGE, BGT, BLE and BLT have been added; these do bitwise (i.e.
unsigned) comparisons. They have two arguments, I and J, which must be of type Integer but may
be of different kind. The result is default Logical.

For example, BGE(INT(Z’FF’,INT8),128) is true, while INT(Z’FF’,INT8)>=128 is false.

• The array reduction intrinsic functions IALL, IANY and IPARITY have been added. These are exactly
the same as SUM and PRODUCT, except that instead of reducing the array by the + or * operation, they
reduce it by the IAND, IOR and IEOR intrinsic functions respectively. That is, each element of the
result is the bitwise-and, bitwise-or, or bitwise-exclusive-or of the reduced elements. If the number of
reduced elements is zero, the result is zero for IANY and IPARITY, and NOT(zero) for IALL.

• The elemental intrinsic functions LEADZ and TRAILZ have been added; these return the number of
leading (most significant) and trailing (least significant) zero bits in the argument I, which must be
of type Integer (of any kind). The result is default Integer.

• The elemental intrinsic functions MASKL and MASKR have been added; these generate simple left-justified
and right-justified bitmasks. The value of MASKL(I,KIND) is an integer with the specified kind that
has its leftmost I bits set to one and the rest set to zero; I must be non-negative and less than or
equal to the bitsize of the result. If KIND is omitted, the result is default integer. The value of MASKR
is similar, but has its rightmost I bits set to one instead.

• The array reduction intrinsic function PARITY has been added. It is exactly the same as ALL and ANY,
except that instead of reducing the array by the .AND. or .OR. operation, it reduces it by the .NEQV.
operation. That is, each element of the result is .TRUE. if an odd number of reduced elements is
.TRUE..

• The elemental intrinsic functions POPCNT and POPPAR have been added. POPCNT(I) returns the number
of bits in the Integer argument I that are set to 1. POPPAR(I) returns zero if the number of bits in I
that are set to 1 are even, and one if it is odd. The result is default Integer.

• The Fortran 2008 rules are used for generic resolution and for checking that procedures in a generic
are unambiguous. Under these rules,

– a dummy procedure is distinguishable from a dummy variable;

– an ALLOCATABLE dummy variable is distinguishable from a POINTER dummy variable that does
not have INTENT(IN).

5 Performance Enhancements

• The intrinsic functions ACHAR and CHAR are now faster in some cases, in particular when applied to
arrays or when used in the middle of an expression.

• The intrinsic functions ADJUSTL, ADJUSTR, LEN TRIM and TRIM are now faster in many cases.

• The intrinsic functions MAXLOC and MINLOC are faster on character strings.

• The intrinsic function MERGE is now faster in some cases, in particular when the non-chosen source
expression would have been expensive to compute.

• The intrinsic function SPREAD is now faster on contiguous arrays.

• The intrinsic function TRANSPOSE is now faster on large arrays, in particular ones that do not fit in
cache.

5

• Some variable-sized array constructors are evaluated more quickly, in particular ones which have many
elements and an implied-DO structure that is complicated.

• The performance of the memory allocator when the −thread safe option is used has been improved.

• Performance of character assignment has been improved in many cases.

6 Additional Error Checking

• Many-one array assignment, where the left-hand side of an intrinsic assignment statement is a vector-
subscripted array section and the vector subscript has duplicate values, is now detected as an error
at compilation time when the vector is constant. When the vector is not constant, this error will be
detected at runtime if the −C=array option is used.

• More errors in pointer usage are detected at compile time.

• IEEE SET ROUNDING MODE now detects a bad ROUND VALUE argument. IEEE VALUE now detects a bad
CLASS argument.

• Shape mismatch is more reliably detected in elemental subroutine calls.

• More shape mismatch errors in intrinsic functions are detected at compile time.

7 Other Enhancements

• The intrinsic module ISO C BINDING is available with the −C=undefined option. Note that this option
changes the ABI in a way that is incompatible with C; however, it is usable in an all-Fortran program.

• The standard intrinsic modules for IEEE arithmetic support, IEEE ARITHMETIC, IEEE EXCEPTIONS
and IEEE FEATURES, are now available with the −C=undefined option.

• The NAG intrinsic modules F90 GC and F90 PRECONN IO are now available with the −C=undefined
option.

• The NAG intrinsic modules for POSIX support, F90 UNIX DIR, F90 UNIX DIRENT, F90 UNIX ENV,
F90 UNIX ERRNO, F90 UNIX FILE, F90 UNIX IO, F90 UNIX PROC and F90 UNIX, are now available with
the −C=undefined option.

• Improved details in error messages for misusing INTENT(IN) pointers.

• DO loops that cannot loop because of a STOP or EXIT statement are detected and a warning produced.

• Line number information has been added to some additional runtime errors when the −g option is
used.

• The −abi=64 and −abi=32 options can now be used on Windows x64 to generate 64-bit and 32-bit
programs.

• The −C=recursion option can now be used at the same time as the −thread safe option.

• The −no underflow warning option has been added. This link-time option suppresses the warning
message that normally appears if a floating-point underflow occurred during execution.

6

• The CONVERT= specifier has been added to the OPEN statement. Acceptable values are ’BIG ENDIAN’,
’BIG IEEE’, ’BIG IEEE DD’, ’BIG NATIVE’, ’LITTLE ENDIAN’, ’LITTLE IEEE’, ’LITTLE IEEE DD’,
’LITTLE NATIVE’, and ’NATIVE’. This is only allowed for unformatted files, and enables runtime
conversion of endianness and file format. Conversion can also be enabled by the environment variable
FORT CONVERTn, where n is the unit number of the file to be converted; this takes precedence over any
CONVERT= specifier on the OPEN statement. The −convert= option can also be used to set the default
conversion mode for all units that are connected with no CONVERT= specifier or environment variable.

• Underflow control via IEEE SET UNDERFLOW MODE (and IEEE GET UNDERFLOW MODE) is now available on
Windows x64, x86-64 Linux and Apple Intel Mac.

• Warning messages are now produced for variables that are set but which are definitely never referenced.
These warnings can be disabled with the −w=unreffed option.

• Text files written in CRLF format (DOS/Windows) can now be read as formatted files by a Fortran
program running on Unix or Linux.

• The JIS X 0213:2004 Japanese character set is supported; the kind is returned by the intrinsic function
reference SELECTED CHAR KIND(’JIS 0213’). As this character set is also sometimes referred to as
‘Shift-JIS’, the name ’SHIFT JIS’ is also recognised by the intrinsic function SELECTED CHAR KIND.

• The 2-byte Unicode character set (UCS-2) is supported; the kind is returned by the intrinsic function
reference SELECTED CHAR KIND(’UCS 2’).

• The Shift-JIS file encoding is supported; to use this, open the file with ENCODING=’SHIFT JIS’. Any
kind of character can be written to and read from a Shift-JIS file. When writing an ISO-8859-1, UCS-2
or UCS-4 character, if it cannot be represented in Shift-JIS it will be changed to a question mark (’?’).
Similarly, when reading into an ISO-8859-1, UCS-2 or UCS-4 variable, if the character read cannot
be represented in the variable’s character set it will be changed to question mark (’?’) if the variable
is ISO-8859-1 and to the Unicode replacement character CHAR(INT(Z’fffd’),KIND(variable)) if the
variable is UCS-2 or UCS-4.

• The F90 KIND module now contains the named constants JIS, UCS2 and UCS4 as kind selectors for the
Japanese, Unicode UCS-2 and ISO 10646 UCS-4 character sets.

• Write-only files are now supported. When a write-only file is OPENed with POSITION=’ASIS’ (or no
POSITION= specifier), the file is positioned at the end; this differs from other files which are positioned
at the beginning. If the file can be positioned, the REWIND statement will set the position to the
beginning; however, the BACKSPACE statement is not operational.

• The INQUIRE statement now reports more accurate information, in particular for the SIZE=, READ=,
READWRITE= and WRITE= specifiers, for both connected and unconnected files.

• Integer literal constants that are 1 bigger than the maximum value for the particular integer kind, but
which are preceded by a unary negation, are accepted. This allows, for example, the expression -128 1
which strictly speaking should be written -127 1-1 1; the former is clearer and more convenient.

• Allow BIND(C) procedures to be ELEMENTAL. References to such procedures will be done in array
element order.

8 Integrated Programming Tools

Three software tools that operate on Fortran source files have been integrated into the NAG compiler system.

• Call Graph Generator — produces a call graph, with optional index and called-by tables.

7

• Dependency Analyser — produces information about dependencies on modules or INCLUDE files, in
‘make’ format, as English prose, or as an ordered build list.

• Polish — polishes (“pretty-prints”) Fortran source files, optionally renumbering statement labels and
converting DO statements to the block DO form.

9 Miscellaneous

• On Linux, Mac and Unix systems, the −g option no longer generates upsf95 debugging information
as this debugger has been withdrawn. On these platforms the −g option is now simply passed to the
C compiler.

• A new option, −max parameter size=N , now controls the maximum size (in MB) allowed for a named
constant (PARAMETER) at compile time. The size of named constants is limited to avoid machine
slowdowns if a stupendously enormous constant is created accidentally. The default maximum size is
50 MB.

• The old −f77 option has been renamed −compatible, to better reflect its actual effect (ABI compat-
ibility with another Fortran compiler) and to avoid confusion with −f95 , −f2003 and −f2008 (these
all set the Fortran standard level).

10 New Fortran Standard

The extensions (described above) which follow the rules of the Fortran 2003 and Fortran 2008 standards
are listed below together with the appropriate section number for the reference book “Modern Fortran
Explained” by Metcalf, Reid & Cohen, Oxford University Press, 2011 printing (ISBN 978-0-19-960142-4).

Section Feature
13.3 Type parameter enquiries (%KIND and %LEN).
14.8 Final subroutines.
14.10 EXTENDS TYPE OF and SAME TYPE AS.
15.3 Structure constructor keywords and overloading.
15.10 Intrinsic functions in constant expressions.
17.13 INQUIRE statement LOGICAL variable kinds.
20.1.3 Improved type-bound procedure declaration statement.
20.1.4 Omitting an allocatable value in a structure constructor.
20.1.6 STOP statement changes.
20.5.7 Generic resolution changes.
20.7.2 The NEWUNIT= specifier.
20.10.1 New intrinsic functions BGE, BGT, BLE and BLT.
20.10.3 New intrinsic functions IALL, IANY and IPARITY.
20.10.4 New intrinsic functions LEADZ, POPCNT, POPPAR and TRAILZ.
20.10.5 New intrinsic functions MASKL and MASKR.
20.10.7 New intrinsic functions SHIFTA, SHIFTL and SHIFTR.
20.11.5 New intrinsic function PARITY.
20.12.2 Names in ISO FORTRAN ENV for common kinds.
20.12.3 Arrays of kinds in ISO FORTRAN ENV.
B.10.2 Redundant CONTAINS statement.
C.2 Obsolescent ENTRY statement.

8

