
NAG Library Function Document

nag_interval_zero_cont_func (c05avc)

1 Purpose

nag_interval_zero_cont_func (c05avc) attempts to locate an interval containing a simple zero of a
continuous function using a binary search. It uses reverse communication for evaluating the function.

2 Specification

#include <nag.h>
#include <nagc05.h>

void nag_interval_zero_cont_func (double *x, double fx, double *h,
double boundl, double boundu, double *y, double c[], Integer *ind,
NagError *fail)

3 Description

You must supply an initial point x and a step h. nag_interval_zero_cont_func (c05avc) attempts to
locate a short interval x; y½ � � boundl; boundu½ � containing a simple zero of f xð Þ.
(On exit we may have x > y; x is determined as the first point encountered in a binary search where the
sign of f xð Þ differs from the sign of f xð Þ at the initial input point x.) The function attempts to locate a
zero of f xð Þ using h, 0:1� h, 0:01� h and 0:001� h in turn as its basic step before quitting with an
error exit if unsuccessful.

nag_interval_zero_cont_func (c05avc) returns to the calling program for each evaluation of f xð Þ. On
each return you should set fx ¼ f xð Þ and call nag_interval_zero_cont_func (c05avc) again.

4 References

None.

5 Arguments

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits
and re-entries, and a final exit, as indicated by the argument ind. Between intermediate exits and re-
entries, all arguments other than fx must remain unchanged.

1: x – double * Input/Output

On initial entry: the best available approximation to the zero.

Constraint: x must lie in the closed interval boundl; boundu½ � (see below).

On intermediate exit: contains the point at which f must be evaluated before re-entry to the
function.

On final exit: contains one end of an interval containing the zero, the other end being in y, unless
an error has occurred. If fail:code ¼ NE_ZERO_NOT_FOUND, x and y are the end points of the
largest interval searched. If a zero is located exactly, its value is returned in x (and in y).

2: fx – double Input

On initial entry: if ind ¼ 1, fx need not be set.

If ind ¼ �1, fx must contain f xð Þ for the initial value of x.

On intermediate re-entry: must contain f xð Þ for the current value of x.

c05 – Roots of One or More Transcendental Equations c05avc

Mark 26 c05avc.1

3: h – double * Input/Output

On initial entry: a basic step size which is used in the binary search for an interval containing a
zero. The basic step sizes h; 0:1� h, 0:01� h and 0:001� h are used in turn when searching for
the zero.

Constraint: either xþ h or x� h must lie inside the closed interval boundl; boundu½ �.
h must be sufficiently large that xþ h 6¼ x on the computer.

On final exit: is undefined.

4: boundl – double Input
5: boundu – double Input

On initial entry: boundl and boundu must contain respectively lower and upper bounds for the
interval of search for the zero.

Constraint: boundl < boundu.

6: y – double * Input/Output

On initial entry: need not be set.

On final exit: contains the closest point found to the final value of x, such that f xð Þ � f yð Þ � 0:0.
If a value x is found such that f xð Þ ¼ 0, then y ¼ x. On final exit with fail:code ¼
NE_ZERO_NOT_FOUND, x and y are the end points of the largest interval searched.

7: c½11� – double Communication Array

On initial entry: need not be set.

On final exit: if fail:code ¼ NE_NOERROR or NE_ZERO_NOT_FOUND, c½0� contains f yð Þ.

8: ind – Integer * Input/Output

On initial entry: must be set to 1 or �1.

ind ¼ 1
fx need not be set.

ind ¼ �1
fx must contain f xð Þ.

On intermediate exit: contains 2 or 3. The calling program must evaluate f at x, storing the result
in fx, and re-enter nag_interval_zero_cont_func (c05avc) with all other arguments unchanged.

On final exit: contains 0.

Constraint: on entry ind ¼ �1, 1, 2 or 3.

9: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

c05avc NAG Library Manual

c05avc.2 Mark 26

NE_INT

On entry, ind ¼ valueh i.
Constraint: ind ¼ �1, 1, 2 or 3.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_REAL_2

On entry, boundl ¼ valueh i and boundu ¼ valueh i.
Constraint: boundl < boundu.

On entry, h is too small for use as a perturbation of x: x ¼ valueh i and h ¼ valueh i.

NE_REAL_3

On entry, x ¼ valueh i, boundl ¼ valueh i and boundu ¼ valueh i.
Constraint: boundl � x � boundu.

NE_REAL_4

On entry, xþ h and x� h both lie outside the interval boundl; boundu½ �: x ¼ valueh i,
h ¼ valueh i, boundl ¼ valueh i and boundu ¼ valueh i.

NE_ZERO_NOT_FOUND

An interval containing the zero could not be found.

7 Accuracy

nag_interval_zero_cont_func (c05avc) is not intended to be used to obtain accurate approximations to
the zero of f xð Þ but rather to locate an interval containing a zero. This interval can then be used as
input to an accurate rootfinder such as nag_zero_cont_func_brent (c05ayc) or nag_zero_cont_func_
brent_rcomm (c05azc). The size of the interval determined depends somewhat unpredictably on the
choice of x and h. The closer x is to the root and the smaller the initial value of h, then, in general, the
smaller (more accurate) the interval determined; however, the accuracy of this statement depends to
some extent on the behaviour of f xð Þ near x ¼ x and on the size of h.

8 Parallelism and Performance

nag_interval_zero_cont_func (c05avc) is not threaded in any implementation.

9 Further Comments

For most problems, the time taken on each call to nag_interval_zero_cont_func (c05avc) will be
negligible compared with the time spent evaluating f xð Þ between calls to nag_interval_zero_cont_func
(c05avc). However, the initial value of x and h will clearly affect the timing. The closer x is to the root,
and the larger the initial value of h then the less time taken. (However taking a large h can affect the
accuracy and reliability of the function, see below.)

You are expected to choose boundl and boundu as physically (or mathematically) realistic limits on the
interval of search. For example, it may be known, from physical arguments, that no zero of f xð Þ of

c05 – Roots of One or More Transcendental Equations c05avc

Mark 26 c05avc.3

interest will lie outside boundl; boundu½ �. Alternatively, f xð Þ may be more expensive to evaluate for
some values of x than for others and such expensive evaluations can sometimes be avoided by careful
choice of boundl and boundu.

The choice of boundl and boundu affects the search only in that these values provide physical
limitations on the search values and that the search is terminated if it seems, from the available
information about f xð Þ, that the zero lies outside boundl; boundu½ �. In this case (fail:code ¼
NE_ZERO_NOT_FOUND on exit), only one of f boundlð Þ and f bounduð Þ may have been evaluated
and a zero close to the other end of the interval could be missed. The actual interval searched is
returned in the arguments x and y and you can call nag_interval_zero_cont_func (c05avc) again to
search the remainder of the original interval.

Though nag_interval_zero_cont_func (c05avc) is intended primarily for determining an interval
containing a zero of f xð Þ, it may be used to shorten a known interval. This could be useful if, for
example, a large interval containing the zero is known and it is also known that the root lies close to
one end of the interval; by setting x to this end of the interval and h small, a short interval will usually
be determined. However, it is worth noting that once any interval containing a zero has been
determined, a call to nag_zero_cont_func_brent_rcomm (c05azc) will usually be the most efficient way
to calculate an interval of specified length containing the zero. To assist in this determination, the
information in fx and in x, y and c½0� on successful exit from nag_interval_zero_cont_func (c05avc) is
in the correct form for a call to function nag_zero_cont_func_brent_rcomm (c05azc) with ind ¼ �1.

If the calculation terminates because f xð Þ ¼ 0:0, then on return y is set to x. (In fact, y ¼ x on return
only in this case.) In this case, there is no guarantee that the value in x corresponds to a simple zero
and you should check whether it does.

One way to check this is to compute the derivative of f at the point x, preferably analytically, or, if this
is not possible, numerically, perhaps by using a central difference estimate. If f 0 xð Þ ¼ 0:0, then x must
correspond to a multiple zero of f rather than a simple zero.

10 Example

This example finds a sub-interval of 0:0; 4:0½ � containing a simple zero of x2 � 3xþ 2. The zero nearest
to 3:0 is required and so we set x ¼ 3:0 initially.

10.1 Program Text

/* nag_interval_zero_cont_func (c05avc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagc05.h>

int main(void)
{

/* Scalars */
Integer exit_status = 0;
double boundl, boundu, fx, h, x, y;
Integer ind;
/* Arrays */
double c[11];
NagError fail;

INIT_FAIL(fail);

printf("nag_interval_zero_cont_func (c05avc) Example Program Results\n");

c05avc NAG Library Manual

c05avc.4 Mark 26

x = 3.0;
h = 0.1;
boundl = 0.0;
boundu = 4.0;
ind = 1;
fx = 0.0;
/* nag_interval_zero_cont_func (c05avc).
* Locates an interval containing a simple zero of a continuous
* function using binary search and reverse communication.
*/

while (ind != 0) {
nag_interval_zero_cont_func(&x, fx, &h, boundl, boundu, &y, c, &ind,

&fail);

if (ind != 0)
fx = pow(x, 2) - 3.0 * x + 2.0;

}

if (fail.code == NE_NOERROR) {
printf("Interval containing root is [x,y], where\n");
printf("x = %12.4f, y = %12.4f\n", x, y);
printf("Values of f at x and y are\n");
printf("f(x) = %12.2f, f(y) = %12.2f\n", fx, c[0]);

}
else {

printf("%s\n", fail.message);
exit_status = 1;
goto END;

}

END:
return exit_status;

}

10.2 Program Data

None.

10.3 Program Results

nag_interval_zero_cont_func (c05avc) Example Program Results
Interval containing root is [x,y], where
x = 1.7000, y = 2.5000
Values of f at x and y are
f(x) = -0.21, f(y) = 0.75

c05 – Roots of One or More Transcendental Equations c05avc

Mark 26 c05avc.5 (last)

	c05avc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	x
	fx
	h
	boundl
	boundu
	y
	c
	ind
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_REAL_2
	NE_REAL_3
	NE_REAL_4
	NE_ZERO_NOT_FOUND

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

