
NAG Library Chapter Introduction

d04 – Numerical Differentiation

Contents

1 Scope of the Chapter . 2

2 Background to the Problems. 2

2.1 Description of the Problem. 2

2.2 Examples of Applications for Numerical Differentiation Routines 3

3 Recommendations on Choice and Use of Available Functions 5

4 Functionality Index . 5

5 Auxiliary Functions Associated with Library Function Arguments 6

6 Functions Withdrawn or Scheduled for Withdrawal . 6

7 References . 6

d04 – Numerical Differentiation Introduction – d04

Mark 26 d04.1

1 Scope of the Chapter

This chapter is concerned with calculating approximations to derivatives of a function f .

2 Background to the Problems

2.1 Description of the Problem

The problem of numerical differentiation does not receive very much attention nowadays. Although the
Taylor series plays a key role in much of classical analysis, the poor reputation enjoyed by numerical
differentiation has led numerical analysts to construct techniques for most problems which avoid the
explicit use of numerical differentiation.

One may briefly and roughly define the term numerical differentiation as any process in which
numerical values of derivatives f sð Þ x0ð Þ are obtained from evaluations f xið Þ of the function f xð Þ at
several abscissae xi near x0. This problem can be stable, well-conditioned, and accurate when complex-
valued abscissae are used. This was first pointed out by Lyness and Moler (1967). An item of numerical
software for this appears in Lyness and Ande (1971). However, in many applications the use of
complex-valued abscissae is either prohibitive or prohibited. The main difficulty in using real abscissae
is that amplification of round-off error can completely obliterate meaningful results. In the days when
one relied on hand calculating machines and tabular data, the frustration caused by this effect led to the
abandonment of serious use of the process.

There are several reasons for believing that, in the present-day computing environment, numerical
differentiation might find a useful role. The first is that, by present standards, it is rather a small-scale
calculation, so its cost may well be negligible compared with any overall saving in cost that might
result from its use. Secondly, the assignment of a step length h is now generally open. One does not
have to rely on tabular data. Thirdly, although the amplification of round-off error is an integral part of
the calculation, its effect can be measured reliably and automatically by the function at the time of the
calculation.

Thus you do not have to gauge the round-off level (or noise level) of the function values or assess the
effect of this on the accuracy of the results. A function does this automatically, returning with each
result an error estimate which has already taken round-off error amplification into account.

We now illustrate, by means of a very simple example, the importance of the round-off error effect. A
very simple approximation of f 0 0ð Þ, based on the identity

f 0 0ð Þ ¼ f hð Þ � f �hð Þð Þ=2hþ h2=3!
� �

f 000 �ð Þ; ð1Þ
is

f hð Þ � f �hð Þð Þ=2h:
If there were no precision problem, this formula would be the only one needed in the theory of first-
order numerical differentiation. We could simply take h ¼ 10�40 (or h ¼ 10�1000) to obtain an excellent
approximation based on two function values. It is only when we consider in detail how a machine with
finite precision comes to calculate f hð Þ � f �hð Þð Þ=2h that the necessity for a sophisticated theory
becomes apparent.

To simplify the subsequent description we shall assume that the quantities involved are neither so close
to zero that the machine underflow characteristics need be considered nor so large that machine
overflow occurs. The approximation mentioned above involves the function values f hð Þ and f �hð Þ. In
general no computer has available these numbers exactly. Instead it uses approximations f̂ hð Þ and
f̂ �hð Þ whose relative accuracy is less than some tolerance �f . If the function f xð Þ is a library function,
for example sinx, �f may coincide with the machine accuracy parameter �m. More generally the
function f xð Þ is calculated in a user-supplied function and �f is larger than �m by a small factor 5 or 6
if the calculation is short or by some larger factor in an extended calculation. This factor is not usually
known by you.

Introduction – d04 NAG Library Manual

d04.2 Mark 26

f̂ hð Þ and f̂ �hð Þ are related to f hð Þ and f �hð Þ by

f̂ hð Þ ¼ f hð Þ 1þ �1�f
� �

; �1j j � 1

f̂ �hð Þ ¼ f �hð Þ 1þ �2�f
� �

; �2j j � 1:

Thus even if the rest of the calculation were carried out exactly, it is trivial to show that

f̂ hð Þ � f̂ �hð Þ
2h

� f hð Þ � f �hð Þ
2h

’ 2��f
f �ð Þ
2h

; �j j � 1:

The difference between the quantity actually calculated and the quantity which one attempts to calculate
may be as large as �ff �ð Þ=h; for example using h ¼ 10�40 and �m ¼ 10�7 this gives a ‘conditioning
error’ of 1033f �ð Þ.
In practice much more sophisticated formulae than (1) above are used, and for these and for the
corresponding higher-derivative formulae the error analysis is different and more complicated in detail.
But invariably the theory contains the same overall feature. In a finite length calculation, the error is
composed of two main parts: a discretization error which increases as h becomes large and is zero for
h ¼ 0; and a ‘conditioning’ error due to amplification of round-off error in function evaluation, which
increases as h becomes small and is infinite for h ¼ 0.

The functions in this chapter have to take into account internally both these sources of error in the
results. Thus they return pairs of results, der½j� 1� and erest½j� 1� where der½j� 1� is an
approximation to f jð Þ x0ð Þ and erest½j� 1� is an estimate of the error in the approximation der½j� 1�.
If the function has not been misled, der½j� 1� and erest½j� 1� satisfy

der½j� 1� � f jð Þ x0ð Þ�� �� � erest½j� 1�:
In this respect, numerical differentiation functions are fundamentally different from other functions. You
do not specify an error criterion. Instead the function provides the error estimate and this may be very
large.

We mention here a terminological distinction. A fully automatic function is one in which you do not
need to provide any information other than that required to specify the problem. Such a function (at a
cost in computing time) decides an appropriate internal parameter such as the step length h by itself. On
the other hand a function which requires you to provide a step length h, but automatically chooses from
several different formulae each based on the specified step length, is termed a semi-automatic function.

The situation described above must have seemed rather depressing when hand machines were in
common use. For example in the simple illustration one does not know the values of the quantities
f 000 �ð Þ or �f involved in the error estimates, and the idea of altering the value of h and starting again
must have seemed appalling. However, by present-day standards, it is a relatively simple matter to write
a program which carries out all the previously considered time-consuming calculations which may seem
necessary. None of the functions in this chapter are particularly revolutionary in concept. They simply
utilize the computer for the sort of task for which it was originally designed. It carries out simple
tedious calculations which are necessary to estimate the accuracy of the results of other even simpler
tedious calculations.

2.2 Examples of Applications for Numerical Differentiation Routines

(a) One immediate use to which a set of derivatives at a point is likely to be put is that of constructing
a Taylor series representation:

f xð Þ ¼ f x0ð Þ þ
Xn
j¼1

f jð Þ x0ð Þ
j!

x� x0ð Þj þ f nþ1ð Þ �ð Þ
nþ 1ð Þ! x� x0ð Þnþ1; � � x0j j � x:

This infinite series converges so long as x� x0j j < Rc (the radius of convergence) and it is only for
these values of x that such a series is likely to be used. In this case in forming the sum, the
required accuracy in f jð Þ x0ð Þ diminishes with increasing j.

d04 – Numerical Differentiation Introduction – d04

Mark 26 d04.3

The series formed from the Taylor series using elementary operations such as integration or
differentiation has the same overall characteristic. A technique based on a Taylor series expansion
may be quite accurate, even if the individual derivatives are not, so long as the less accurate
derivatives are associated with known small coefficients.

The error introduced by using n approximate derivatives der½j� 1� is bounded by

Xn
j¼1

erest½j� 1� x� x0j jj=j!

Thus, if you are prepared to base the result on a truncated Taylor series, the additional error
introduced by using approximate Taylor coefficients can be readily bounded from the values of
erest½j� 1�. However, in an automatic code you must be prepared to introduce some alternative
approach in case this error bound turns out to be unduly high.

In this sort of application the accuracy of the result depends on the size of the errors in the
numerical differentiation. There are other applications where the effect of large errors erest½j� 1�
is merely to prolong a calculation, but not to impair the final accuracy.

(b) A simple Taylor series approach such as described in (a) is used to find a starting value for a
rapidly converging but extremely local iterative process.

(c) The technique known as ‘subtracting out the singularity’ as a preliminary to numerical quadrature
may be extended and may be carried out approximately. Thus suppose we are interested in
evaluating

Z 1

0
x� 1=2ð Þ� xð Þ dx;

we have an automatic quadrature function available, and we have a function available for � xð Þ
which we know to be an analytic function. An integrand function like x� 1=2ð Þ� xð Þ is generally
accepted to be difficult for an automatic integrator because of the singularity. If � xð Þ and some of
its derivatives at the singularity x ¼ 0 are known one may effectively ‘subtract out’ the singularity
using the following identity:

Z 1

0
x� 1=2ð Þ� xð Þ dx ¼

Z 1

0
x� 1=2ð Þ � xð Þ � � 0ð Þ �Ax�Bx2=2

� �
dxþ 2� 0ð Þ þ 2A=3þB=5 ð2Þ

with A ¼ �0 0ð Þ and B ¼ �00 0ð Þ.
The integrand function on the right of (2) has no singularity, but its third derivative does. Thus
using numerical quadrature for this integral is much cheaper than using numerical quadrature for
the original integral (in the left-hand side of (2)).

However, (2) is an identity whatever values of A and B are assigned. Thus the same procedure can
be used with A and B being approximations to �0 0ð Þ and �00 0ð Þ provided by a numerical
differentiation function. The integrand would now be more difficult to integrate than if A and B
were correct but still much less difficult than the original integrand (on the left-hand side of (2)).
But, assuming that the automatic quadrature function is reliable, the overall result would still be
correct. The effect of using approximate derivatives rather than exact derivatives does not impair
the accuracy of the result. It simply makes the result more expensive to obtain, but not nearly as
expensive as if no derivatives were used at all.

(d) The calculation of a definite integral may be based on the Euler–Maclaurin expansion

Z 1

0
f xð Þ dx ¼ 1

m

Xm
j¼0

00
f j=mð Þ �

Xl

s¼1

B2s

2s!

f 2s�1ð Þ 1ð Þ � f 2s�1ð Þ 0ð Þ� �
m2s

þO m �2l�2ð Þ
� �

:

Here B2s is a Bernoulli number. If one fixes a value of l then as m is increased the right-hand side
(without the remainder term) approaches the true value of the integral. This statement remains true
whatever values are used to replace f 2s�1ð Þ 1ð Þ and f 2s�1ð Þ 0ð Þ. If no derivatives are available, and
this formula is used (effectively with the derivatives replaced by zero) the rate of convergence is
slow (like m�2) and a large number of function evaluations may be used in calculating the

Introduction – d04 NAG Library Manual

d04.4 Mark 26

trapezoidal rule sum for large m before a sufficiently accurate result is attained. However, if
approximate derivatives are used, the initial rate of convergence is enhanced. In fact, in this
example any derivative approximation which is closer than the approximation zero is helpful. Thus
the use of inaccurate derivatives may have the effect of shortening the overall calculation, since a
sufficiently accurate result may be obtained using a smaller value of m, without impairing the
accuracy of the result. (The resemblance with Gregory's formula is superficial. Here l is kept fixed
and m is increased, ensuring a convergent process.)

The examples given above are only intended to illustrate the sort of use to which approximate
derivatives may be put. Very simple illustrations have been used for clarity, and in such simple
cases there are usually more efficient approaches to the problem. The same ideas applied in a more
complicated or restrictive setting may provide an efficient approach to a problem for which no
simple standard approach exists.

3 Recommendations on Choice and Use of Available Functions

(a) At the present, there is only one numerical differentiation algorithm available in this chapter
accessible using direct communication in nag_numdiff_1d_real (d04aac), and using reverse
communication in nag_numdiff_1d_real_eval (d04bac) (see Section 2.3.2 in How to Use the NAG
Library and its Documentation for a description of the difference between these two conventions).
These are semi-automatic functions for obtaining approximations to the first fourteen derivatives of
a real valued function f xð Þ at a specified point x0. For nag_numdiff_1d_real (d04aac), you must
provide a function representing f xð Þ, the value of x0, an upper limit n � 14 on the order of the
derivatives required and a step length h. For nag_numdiff_1d_real_eval (d04bac), you must supply
the value of x0, 20 other abscissae and the function values at those abscissae. Both functions return
a set of approximations der½j� 1� and corresponding error estimates erest½j� 1� which hopefully
satisfy

der½j� 1� � f jð Þ x0ð Þ�� �� � erest½j� 1�; j ¼ 1; 2; . . . ; n � 14:

It is important that the error estimate erest½j� 1� be taken into consideration before any use of
der½j� 1� is made. The actual size of erest½j� 1� depends on the analytic structure of the function,
on the computational precision used and on the step size h, and is difficult to predict. Thus you
have to run the function to find out how accurate the results are. Usually you will find the higher-
order derivatives are successively more inaccurate and that past a certain order, say 10 or 11, the
size of erest½j� 1� actually exceeds der½j� 1�. Clearly when this happens the approximation
der½j� 1� is unusable.

(b) There is available in the algorithm section of CACM (see Lyness and Ande (1971)) a semi-
automatic Fortran function for numerical differentiation of an analytical function f zð Þ at a possibly
complex abscissa z0. This is a stable problem. It can be used for any problem for which
nag_numdiff_1d_real (d04aac) might be used and produces more accurate results, and derivatives
of arbitrary high order. However, even if z0 is real and f zð Þ is real for z, this function requires a
user-supplied function which evaluates f zð Þ for complex values of z and it makes use of complex
arithmetic.

(c) Routines are available in Chapter e02 to differentiate functions which are polynomials (in
Chebyshev series representation) or cubic splines (in B-spline representation).

4 Functionality Index

Generates abscissae for nag_numdiff_1d_real_eval (d04bac) nag_numdiff_1d_real_absci (d04bbc)

Numerical derivatives,
direct communication .. nag_numdiff_1d_real (d04aac)
reverse communication ... nag_numdiff_1d_real_eval (d04bac)

d04 – Numerical Differentiation Introduction – d04

Mark 26 d04.5

5 Auxiliary Functions Associated with Library Function Arguments

None.

6 Functions Withdrawn or Scheduled for Withdrawal

None.

7 References

Lyness J N and Ande G (1971) Algorithm 413, ENTCAF and ENTCRE: evaluation of normalised
Taylor coefficients of an analytic function Comm. ACM 14(10) 669–675

Lyness J N and Moler C B (1967) Numerical differentiation of analytic functions SIAM J. Numer. Anal.
4(2) 202–210

Introduction – d04 NAG Library Manual

d04.6 (last) Mark 26

	d04 - Numerical Differentiation, Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Description of the Problem
	2.2 Examples of Applications for Numerical Differentiation Routines

	3 Recommendations on Choice and Use of Available Functions
	4 Functionality Index
	5 Auxiliary Functions Associated with Library Function Arguments
	6 Functions Withdrawn or Scheduled for Withdrawal
	7 References
	Lyness and Ande (1971)
	Lyness and Moler (1967)

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

