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1 Scope of the Chapter

This chapter provides functions for various types of matrix eigenvalue problem:

standard eigenvalue problems (finding eigenvalues and eigenvectors of a square matrix A);

singular value problems (finding singular values and singular vectors of a rectangular matrix A);

generalized eigenvalue problems (finding eigenvalues and eigenvectors of a matrix pencil
A� �B).

quadratic eigenvalue problems (finding eigenvalues and eigenvectors of the quadratic
�2Aþ �Bþ C).

Functions are provided for both real and complex data.

The majority of functions for these problems can be found in Chapter f08 which contains software
derived from LAPACK (see Anderson et al. (1999)). However, you should read the the f02 Chapter
Introduction before turning to Chapter f08, especially if you are a new user. Chapter f12 contains
functions for large sparse eigenvalue problems, although one such function is also available in this
chapter.

Chapters f02 and f08 contain Black Box (or Driver) functions that enable many problems to be solved
by a call to a single function, and the decision trees in Section 4 direct you to the most appropriate
functions in Chapters f02 and f08. The Chapter f02 functions call functions in Chapters f07 and f08
wherever possible to perform the computations, and there are pointers in Section 4 to the relevant
decision trees in Chapter f08.

2 Background to the Problems

Here we describe the different types of problem which can be tackled by the functions in this chapter,
and give a brief outline of the methods used to solve them. If you have one specific type of problem to
solve, you need only read the relevant sub-section and then turn to Section 3. Consult a standard
textbook for a more thorough discussion, for example Golub and Van Loan (1996) or Parlett (1998).

In each sub-section, we first describe the problem in terms of real matrices. The changes needed to
adapt the discussion to complex matrices are usually simple and obvious: a matrix transpose such as QT

must be replaced by its conjugate transpose QH; symmetric matrices must be replaced by Hermitian
matrices, and orthogonal matrices by unitary matrices. Any additional changes are noted at the end of
the sub-section.

2.1 Standard Eigenvalue Problems

Let A be a square matrix of order n. The standard eigenvalue problem is to find eigenvalues, �, and
corresponding eigenvectors, x 6¼ 0, such that

Ax ¼ �x: ð1Þ
(The phrase ‘eigenvalue problem’ is sometimes abbreviated to eigenproblem.)

2.1.1 Standard symmetric eigenvalue problems

If A is real symmetric, the eigenvalue problem has many desirable features, and it is advisable to take
advantage of symmetry whenever possible.

The eigenvalues � are all real, and the eigenvectors can be chosen to be mutually orthogonal. That is,
we can write

Azi ¼ �izi for i ¼ 1; 2; . . . ; n

or equivalently:

AZ ¼ Z� ð2Þ
where � is a real diagonal matrix whose diagonal elements �i are the eigenvalues, and Z is a real
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orthogonal matrix whose columns zi are the eigenvectors. This implies that zTi zj ¼ 0 if i 6¼ j, and
zik k2 ¼ 1.

Equation (2) can be rewritten

A ¼ Z�ZT: ð3Þ
This is known as the eigen-decomposition or spectral factorization of A.

Eigenvalues of a real symmetric matrix are well-conditioned, that is, they are not unduly sensitive to
perturbations in the original matrix A. The sensitivity of an eigenvector depends on how small the gap
is between its eigenvalue and any other eigenvalue: the smaller the gap, the more sensitive the
eigenvector. More details on the accuracy of computed eigenvalues and eigenvectors are given in the
function documents, and in the f08 Chapter Introduction.

For dense or band matrices, the computation of eigenvalues and eigenvectors proceeds in the following
stages:

1. A is reduced to a symmetric tridiagonal matrix T by an orthogonal similarity transformation:
A ¼ QTQT, where Q is orthogonal. (A tridiagonal matrix is zero except for the main diagonal and
the first subdiagonal and superdiagonal on either side.) T has the same eigenvalues as A and is
easier to handle.

2. Eigenvalues and eigenvectors of T are computed as required. If all eigenvalues (and optionally
eigenvectors) are required, they are computed by the QR algorithm, which effectively factorizes T
as T ¼ S�ST, where S is orthogonal, or by the divide-and-conquer method. If only selected
eigenvalues are required, they are computed by bisection, and if selected eigenvectors are required,
they are computed by inverse iteration. If s is an eigenvector of T , then Qs is an eigenvector of A.

All the above remarks also apply – with the obvious changes – to the case when A is a complex
Hermitian matrix. The eigenvectors are complex, but the eigenvalues are all real, and so is the
tridiagonal matrix T .

If A is large and sparse, the methods just described would be very wasteful in both storage and
computing time, and therefore an alternative algorithm, known as subspace iteration, is provided (for
real problems only) to find a (usually small) subset of the eigenvalues and their corresponding
eigenvectors. Chapter f12 contains functions based on the Lanczos method for real symmetric large
sparse eigenvalue problems, and these functions are usually more efficient than subspace iteration.

2.1.2 Standard nonsymmetric eigenvalue problems

A real nonsymmetric matrix A may have complex eigenvalues, occurring as complex conjugate pairs. If
x is an eigenvector corresponding to a complex eigenvalue �, then the complex conjugate vector �x is
the eigenvector corresponding to the complex conjugate eigenvalue ��. Note that the vector x defined in
equation (1) is sometimes called a right eigenvector; a left eigenvector y is defined by

yHA ¼ �yH or ATy ¼ ��y:

Functions in this chapter only compute right eigenvectors (the usual requirement), but functions in
Chapter f08 can compute left or right eigenvectors or both.

The eigenvalue problem can be solved via the Schur factorization of A, defined as

A ¼ ZTZT;

where Z is an orthogonal matrix and T is a real upper quasi-triangular matrix, with the same
eigenvalues as A. T is called the Schur form of A. If all the eigenvalues of A are real, then T is upper
triangular, and its diagonal elements are the eigenvalues of A. If A has complex conjugate pairs of
eigenvalues, then T has 2 by 2 diagonal blocks, whose eigenvalues are the complex conjugate pairs of
eigenvalues of A. (The structure of T is simpler if the matrices are complex – see below.)
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For example, the following matrix is in quasi-triangular form

1 � � �
0 2 �1 �
0 1 2 �
0 0 0 3

0
B@

1
CA

and has eigenvalues 1, 2� i, and 3. (The elements indicated by ‘�’ may take any values.)

The columns of Z are called the Schur vectors. For each k 1 � k � nð Þ, the first k columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal of
T . (An invariant subspace (for A) is a subspace S such that for any vector v in S, Av is also in S.)
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of k eigenvalues
occupy the k leading positions on the diagonal of T , and functions for this purpose are provided in
Chapter f08.

Note that if A is symmetric, the Schur vectors are the same as the eigenvectors, but if A is
nonsymmetric, they are distinct, and the Schur vectors, being orthonormal, are often more satisfactory
to work with in numerical computation.

Eigenvalues and eigenvectors of a nonsymmetric matrix may be ill-conditioned, that is, sensitive to
perturbations in A. Chapter f08 contains functions which compute or estimate the condition numbers of
eigenvalues and eigenvectors, and the f08 Chapter Introduction gives more details about the error
analysis of nonsymmetric eigenproblems. The accuracy with which eigenvalues and eigenvectors can be
obtained is often improved by balancing a matrix. This is discussed further in Section 3.4.

Computation of eigenvalues, eigenvectors or the Schur factorization proceeds in the following stages:

1. A is reduced to an upper Hessenberg matrix H by an orthogonal similarity transformation:
A ¼ QHQT, where Q is orthogonal. (An upper Hessenberg matrix is zero below the first
subdiagonal.) H has the same eigenvalues as A, and is easier to handle.

2. The upper Hessenberg matrix H is reduced to Schur form T by the QR algorithm, giving the Schur
factorization H ¼ STST. The eigenvalues of A are obtained from the diagonal blocks of T . The
matrix Z of Schur vectors (if required) is computed as Z ¼ QS.

3. After the eigenvalues have been found, eigenvectors may be computed, if required, in two different
ways. Eigenvectors of H can be computed by inverse iteration, and then pre-multiplied by Q to
give eigenvectors of A; this approach is usually preferred if only a few eigenvectors are required.
Alternatively, eigenvectors of T can be computed by back-substitution, and pre-multiplied by Z to
give eigenvectors of A.

All the above remarks also apply – with the obvious changes – to the case when A is a complex
matrix. The eigenvalues are in general complex, so there is no need for special treatment of complex
conjugate pairs, and the Schur form T is simply a complex upper triangular matrix.

As for the symmetric eigenvalue problem, if A and is large and sparse then it is generally preferable to
use an alternative method. Chapter f12 provides functions based on Arnoldi's method for both real and
complex matrices, intended to find a subset of the eigenvalues and vectors.

2.2 The Singular Value Decomposition

The singular value decomposition (SVD) of a real m by n matrix A is given by

A ¼ U�V T;

where U and V are orthogonal and � is an m by n diagonal matrix with real diagonal elements, �i,
such that

�1 � �2 � � � � � �min m;nð Þ � 0:

The �i are the singular values of A and the first min m;nð Þ columns of U and V are, respectively, the
left and right singular vectors of A. The singular values and singular vectors satisfy
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Avi ¼ �iui and ATui ¼ �ivi

where ui and vi are the ith columns of U and V respectively.

The singular value decomposition of A is closely related to the eigen-decompositions of the symmetric
matrices ATA or AAT, because:

ATAvi ¼ �2
i vi and AATui ¼ �2i ui:

However, these relationships are not recommended as a means of computing singular values or vectors
unless A is sparse and functions from Chapter f12 are to be used.

If Uk, Vk denote the leading k columns of U and V respectively, and if �k denotes the leading principal
submatrix of �, then

Ak � Uk�kV
T
k

is the best rank-k approximation to A in both the 2-norm and the Frobenius norm.

Singular values are well-conditioned; that is, they are not unduly sensitive to perturbations in A. The
sensitivity of a singular vector depends on how small the gap is between its singular value and any
other singular value: the smaller the gap, the more sensitive the singular vector. More details on the
accuracy of computed singular values and vectors are given in the function documents and in the f08
Chapter Introduction.

The singular value decomposition is useful for the numerical determination of the rank of a matrix, and
for solving linear least squares problems, especially when they are rank-deficient (or nearly so). See
Chapter f04.

Computation of singular values and vectors proceeds in the following stages:

1. A is reduced to an upper bidiagonal matrix B by an orthogonal transformation A ¼ U1BV
T
1 , where

U1 and V1 are orthogonal. (An upper bidiagonal matrix is zero except for the main diagonal and
the first superdiagonal.) B has the same singular values as A, and is easier to handle.

2. The SVD of the bidiagonal matrix B is computed as B ¼ U2�V T
2 , where U2 and V2 are orthogonal

and � is diagonal as described above. Then in the SVD of A, U ¼ U1U2 and V ¼ V1V2.

All the above remarks also apply – with the obvious changes – to the case when A is a complex
matrix. The singular vectors are complex, but the singular values are real and non-negative, and the
bidiagonal matrix B is also real.

By formulating the problems appropriately, real large sparse singular value problems may be solved
using the symmetric eigenvalue functions in Chapter f12.

2.3 Generalized Eigenvalue Problems

Let A and B be square matrices of order n. The generalized eigenvalue problem is to find eigenvalues,
�, and corresponding eigenvectors, x 6¼ 0, such that

Ax ¼ �Bx: ð4Þ
For given A and B, the set of all matrices of the form A� �B is called a pencil, and � and x are said to
be an eigenvalue and eigenvector of the pencil A� �B.

When B is nonsingular, equation (4) is mathematically equivalent to B�1Að Þx ¼ �x, and when A is
nonsingular, it is equivalent to A�1Bð Þx ¼ 1=�ð Þx. Thus, in theory, if one of the matrices A or B is
known to be nonsingular, the problem could be reduced to a standard eigenvalue problem.

However, for this reduction to be satisfactory from the point of view of numerical stability, it is
necessary not only that B (or A) should be nonsingular, but that it should be well-conditioned with
respect to inversion. The nearer B is to singularity, the more unsatisfactory B�1A will be as a vehicle
for determining the required eigenvalues. Well-determined eigenvalues of the original problem (4) may
be poorly determined even by the correctly rounded version of B�1A.
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We consider first a special class of problems in which B is known to be nonsingular, and then return to
the general case in the following sub-section.

2.3.1 Generalized symmetric-definite eigenvalue problems

If A and B are symmetric and B is positive definite, then the generalized eigenvalue problem has
desirable properties similar to those of the standard symmetric eigenvalue problem. The eigenvalues are
all real, and the eigenvectors, while not orthogonal in the usual sense, satisfy the relations zTi Bzj ¼ 0
for i 6¼ j and can be normalized so that zTi Bzi ¼ 1.

Note that it is not enough for A and B to be symmetric; B must also be positive definite, which implies
nonsingularity. Eigenproblems with these properties are referred to as symmetric-definite problems.

If � is the diagonal matrix whose diagonal elements are the eigenvalues, and Z is the matrix whose
columns are the eigenvectors, then

ZTAZ ¼ � and ZTBZ ¼ I:

To compute eigenvalues and eigenvectors, the problem can be reduced to a standard symmetric
eigenvalue problem, using the Cholesky factorization of B as LLT or UTU (see Chapter f07). Note,
however, that this reduction does implicitly involve the inversion of B, and hence this approach should
not be used if B is ill-conditioned with respect to inversion.

For example, with B ¼ LLT, we have

Az ¼ �Bz , L�1AL�T
� �

LTz
� � ¼ � LTz

� �
:

Hence the eigenvalues of Az ¼ �Bz are those of Cy ¼ �y, where C is the symmetric matrix
C ¼ L�1AL�T and y ¼ LTz. The standard symmetric eigenproblem Cy ¼ �y may be solved by the
methods described in Section 2.1.1. The eigenvectors z of the original problem may be recovered by
computing z ¼ L�Ty.

Most of the functions which solve this class of problems can also solve the closely related problems

ABx ¼ �x or BAx ¼ �x

where again A and B are symmetric and B is positive definite. See the function documents for details.

All the above remarks also apply – with the obvious changes – to the case when A and B are complex
Hermitian matrices. Such problems are called Hermitian-definite. The eigenvectors are complex, but the
eigenvalues are all real.

If A and B are large and sparse, reduction to an equivalent standard eigenproblem as described above
would almost certainly result in a large dense matrix C, and hence would be very wasteful in both
storage and computing time. The methods of subspace iteration and Lanczos type methods, mentioned
in Section 2.1.1, can also be used for large sparse generalized symmetric-definite problems.

2.3.2 Generalized nonsymmetric eigenvalue problems

Any generalized eigenproblem which is not symmetric-definite with well-conditioned B must be
handled as if it were a general nonsymmetric problem.

If B is singular, the problem has infinite eigenvalues. These are not a problem; they are equivalent to
zero eigenvalues of the problem Bx ¼ �Ax. Computationally they appear as very large values.

If A and B are both singular and have a common null space, then A� �B is singular for all �; in other
words, any value � can be regarded as an eigenvalue. Pencils with this property are called singular.

As with standard nonsymmetric problems, a real problem may have complex eigenvalues, occurring as
complex conjugate pairs.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of A and B:

A ¼ QUZT; B ¼ QVZT

where Q and Z are orthogonal, V is upper triangular, and U is upper quasi-triangular (defined just as in
Section 2.1.2).

Introduction – f02 NAG Library Manual

f02.6 Mark 26



If all the eigenvalues are real, then U is upper triangular; the eigenvalues are given by �i ¼ uii=vii. If
there are complex conjugate pairs of eigenvalues, then U has 2 by 2 diagonal blocks.

Eigenvalues and eigenvectors of a generalized nonsymmetric problem may be ill-conditioned; that is,
sensitive to perturbations in A or B.

Particular care must be taken if, for some i, uii ¼ vii ¼ 0, or in practical terms if uii and vii are both
small; this means that the pencil is singular, or approximately so. Not only is the particular value �i

undetermined, but also no reliance can be placed on any of the computed eigenvalues. See also the
function documents.

Computation of eigenvalues and eigenvectors proceeds in the following stages.

1. The pencil A� �B is reduced by an orthogonal transformation to a pencil H � �K in which H is
upper Hessenberg and K is upper triangular: A ¼ Q1HZT

1 and B ¼ Q1KZT
1 . The pencil H � �K

has the same eigenvalues as A� �B, and is easier to handle.

2. The upper Hessenberg matrix H is reduced to upper quasi-triangular form, while K is maintained
in upper triangular form, using the QZ algorithm. This gives the generalized Schur factorization:
H ¼ Q2UZ2 and K ¼ Q2V Z2.

3. Eigenvectors of the pencil U � �V are computed (if required) by back-substitution, and pre-
multiplied by Z1Z2 to give eigenvectors of A.

All the above remarks also apply – with the obvious changes – to the case when A and B are complex
matrices. The eigenvalues are in general complex, so there is no need for special treatment of complex
conjugate pairs, and the matrix U in the generalized Schur factorization is simply a complex upper
triangular matrix.

As for the generalized symmetric-definite eigenvalue problem, if A and B are large and sparse then it is
generally preferable to use an alternative method. Chapter f12 provides functions based on Arnoldi's
method for both real and complex matrices, intended to find a subset of the eigenvalues and vectors.

2.4 Quadratic eigenvalue problems

Let A, B and C be square matrices of order n. The quadratic eigenvalue problem (QEP) is to find
eigenvalues, �, and corresponding eigenvectors, x 6¼ 0, such that

�2Aþ �Bþ C
� �

x ¼ 0:

More specifically, x is a right eigenvector and a left eigenvector, y, is such that

yH �2Aþ �Bþ C
� � ¼ 0;

where yH is the conjugate transpose of y (transpose when y is real).

In general the QEP has 2n eigenvalues and corresponding eigenvectors.

QEPs are generally solved by linearizing the problem to produce a 2n by 2n generalized eigenvalue
problem. For example,

C1 �ð Þ ¼ B C
�I 0

� �
� �

�A 0
0 �I

� �
;

which is called the first companion form and has the same 2n eigenvalues as the QEP.

If

det �2Aþ �Bþ C
� � 6� 0;

then the QEP is said to be regular, or non-singular. For a regular QEP, when C is singular the QEP has
one or more zero eigenvalues and when A is singular the QEP has one or more infinite eigenvalues. As
with the generalized problem particular care must be taken when the problem is singular (see
Section 2.3.2).

As with generalized nonsymmetric problems, a real QEP may have complex eigenvalues, occurring as
complex conjugate pairs.
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For further information on QEPs, see the survey article by Tisseur and Meerbergen (2001), and for
details on solving the dense QEP see Hammarling et al. (2013).

3 Recommendations on Choice and Use of Available Functions

3.1 Black Box Functions and General Purpose Functions

Functions in the NAG C Library for solving eigenvalue problems fall into two categories.

1. Black Box Functions: these are designed to solve a standard type of problem in a single call – for
example, to compute all the eigenvalues and eigenvectors of a real symmetric matrix. You are
recommended to use a black box function if there is one to meet your needs; refer to the decision
tree in Section 4.1 or the index in Section 5.

2. General Purpose Functions: these perform the computational subtasks which make up the
separate stages of the overall task, as described in Section 2 – for example, reducing a real
symmetric matrix to tridiagonal form. General purpose functions are to be found, for historical
reasons, some in this chapter, a few in Chapter f01, but most in Chapter f08. If there is no black
box function that meets your needs, you will need to use one or more general purpose functions.

Here are some of the more likely reasons why you may need to do this:

Your problem is already in one of the reduced forms – for example, your symmetric matrix
is already tridiagonal.

You wish to economize on storage for symmetric matrices (see Section 3.3).

You wish to find selected eigenvalues or eigenvectors of a generalized symmetric-definite
eigenproblem (see also Section 3.2).

The decision trees in Section 4.2 list the combinations of general purpose functions which are needed to
solve many common types of problem.

Sometimes a combination of a black box function and one or more general purpose functions will be
the most convenient way to solve your problem: the black box function can be used to compute most of
the results, and a general purpose function can be used to perform a subsidiary computation, such as
computing condition numbers of eigenvalues and eigenvectors.

3.2 Computing Selected Eigenvalues and Eigenvectors

The decision trees and the function documents make a distinction between functions which compute all
eigenvalues or eigenvectors, and functions which compute selected eigenvalues or eigenvectors; the two
classes of function use different algorithms.

It is difficult to give clear guidance on which of these two classes of function to use in a particular case,
especially with regard to computing eigenvectors. If you only wish to compute a very few eigenvectors,
then a function for selected eigenvectors will be more economical, but if you want to compute a
substantial subset (an old rule of thumb suggested more than 25%), then it may be more economical to
compute all of them. Conversely, if you wish to compute all the eigenvectors of a sufficiently large
symmetric tridiagonal matrix, the function for selected eigenvectors may be faster.

The choice depends on the properties of the matrix and on the computing environment; if it is critical,
you should perform your own timing tests.

For dense nonsymmetric eigenproblems, there are no algorithms provided for computing selected
eigenvalues; it is always necessary to compute all the eigenvalues, but you can then select specific
eigenvectors for computation by inverse iteration.

3.3 Storage Schemes for Symmetric Matrices

Functions which handle symmetric matrices are usually designed to use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle
is stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining
elements of the array can be used to store other useful data. However, that is not always convenient,
and if it is important to economize on storage, the upper or lower triangle can be stored in a one-
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dimensional array of length n nþ 1ð Þ=2; in other words, the storage is almost halved. This storage
format is referred to as packed storage.

Functions designed for packed storage are usually less efficient, especially on high-performance
computers, so there is a trade-off between storage and efficiency.

A band matrix is one whose nonzero elements are confined to a relatively small number of subdiagonals
or superdiagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required.

Functions which take advantage of packed storage or bandedness are provided for both standard
symmetric eigenproblems and generalized symmetric-definite eigenproblems.

3.4 Balancing for Nonsymmmetric Eigenproblems

There are two preprocessing steps which one may perform on a nonsymmetric matrix A in order to
make its eigenproblem easier. Together they are referred to as balancing.

1. Permutation: this involves reordering the rows and columns to make A more nearly upper
triangular (and thus closer to Schur form): A0 ¼ PAPT, where P is a permutation matrix. If A has
a significant number of zero elements, this preliminary permutation can reduce the amount of work
required, and also improve the accuracy of the computed eigenvalues. In the extreme case, if A is
permutable to upper triangular form, then no floating-point operations are needed to reduce it to
Schur form.

2. Scaling: a diagonal matrix D is used to make the rows and columns of A0 more nearly equal in
norm: A00 ¼ DA0D�1. Scaling can make the matrix norm smaller with respect to the eigenvalues,
and so possibly reduce the inaccuracy contributed by roundoff (see Chapter II/11 of Wilkinson and
Reinsch (1971)).

Functions are provided in Chapter f08 for performing either or both of these preprocessing steps, and
also for transforming computed eigenvectors or Schur vectors back to those of the original matrix.

Black box functions in this chapter which compute the Schur factorization perform only the permutation
step, since diagonal scaling is not in general an orthogonal transformation. The black box functions
which compute eigenvectors perform both forms of balancing.

3.5 Non-uniqueness of Eigenvectors and Singular Vectors

Eigenvectors, as defined by equations (1) or (4), are not uniquely defined. If x is an eigenvector, then so
is kx where k is any nonzero scalar. Eigenvectors computed by different algorithms, or on different
computers, may appear to disagree completely, though in fact they differ only by a scalar factor (which
may be complex). These differences should not be significant in any application in which the
eigenvectors will be used, but they can arouse uncertainty about the correctness of computed results.

Even if eigenvectors x are normalized so that xk k2 ¼ 1, this is not sufficient to fix them uniquely, since
they can still be multiplied by a scalar factor k such that kj j ¼ 1. To counteract this inconvenience, most
of the functions in this chapter, and in Chapter f08, normalize eigenvectors (and Schur vectors) so that
xk k2 ¼ 1 and the component of x with largest absolute value is real and positive. (There is still a
possible indeterminacy if there are two components of equal largest absolute value – or in practice if
they are very close – but this is rare.)

In symmetric problems the computed eigenvalues are sorted into ascending order, but in nonsymmetric
problems the order in which the computed eigenvalues are returned is dependent on the detailed
working of the algorithm and may be sensitive to rounding errors. The Schur form and Schur vectors
depend on the ordering of the eigenvalues and this is another possible cause of non-uniqueness when
they are computed. However, it must be stressed again that variations in the results from this cause
should not be significant. (Functions in Chapter f08 can be used to transform the Schur form and Schur
vectors so that the eigenvalues appear in any given order if this is important.)

In singular value problems, the left and right singular vectors u and v which correspond to a singular
value � cannot be normalized independently: if u is multiplied by a factor k such that kj j ¼ 1, then v
must also be multiplied by k.
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Non-uniqueness also occurs among eigenvectors which correspond to a multiple eigenvalue, or among
singular vectors which correspond to a multiple singular value. In practice, this is more likely to be
apparent as the extreme sensitivity of eigenvectors which correspond to a cluster of close eigenvalues
(or of singular vectors which correspond to a cluster of close singular values).

4 Decision Trees

4.1 Black Box Functions

The decision tree for this section is divided into three sub-trees.

Tree 1 Eigenvalues and Eigenvectors of Real Matrices

Tree 2 Eigenvalues and Eigenvectors of Complex Matrices

Tree 3 Singular Values and Singular Vectors

Note: for the Chapter f08 functions there is generally a choice of simple and comprehensive function.
The comprehensive functions return additional information such as condition and/or error estimates.

Tree 1: Eigenvalues and Eigenvectors of Real Matrices

Is this a sparse
eigenproblem Ax ¼ �x or
Ax ¼ �Bx?

yes
Is the problem symmetric?

yes
f02fkc

no

f02ekc

no

Is the eigenproblem
�2Aþ �Bþ C
� �

x ¼ 0? yes
f02jcc

no

Is the eigenproblem
Ax ¼ �Bx? yes

Are A and B symmetric
with B positive definite and
well-conditioned w.r.t
inversion?

yes
Are A and B band matrices?

yes
f08uac, f08ubc or f12ffc and

f12agc

no

f08sac or f08sbc

no

Are A and B band matrices?
yes

f12afc and f12agc

no

Is the generalized Schur
factorization required? yes

f08xac

no

f08wac or f08wbc

no

The eigenproblem is
Ax ¼ �x. Is A symmetric? yes

Are all eigenvalues or all
eigenvectors required? yes

f08fac

no

f08fbc

no

Are eigenvalues only
required? yes

f08nac or f08nbc

no

Is the Schur factorization
required? yes

f08pac or f08pbc

no

Are all eigenvectors
required? yes

f08nac or f08nbc

no

f02ecc
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Tree 2: Eigenvalues and Eigenvectors of Complex Matrices

Is this a sparse eigenproblem Ax ¼ �x
or Ax ¼ �Bx? yes

Are A and B banded matrices?
yes

f12atc and f12auc

no

See Chapter f12

no

Is the eigenproblem
�2Aþ �Bþ C
� �

x ¼ 0? yes
f02jqc

no

Is the eigenproblem Ax ¼ �Bx?
yes

Are A and B Hermitian with B positive
definite and well-conditioned w.r.t.
inversion?

yes
f08unc or f08upc

no

Is the generalized Schur factorization
required? yes

f08xnc

no

f08wnc

no

The eigenproblem is Ax ¼ �x. Is A
Hermitian? yes

Are all eigenvalues and eigenvectors
required? yes

f08fnc or f08fpc

no

f08fpc

no

Are eigenvalues only required?
yes

f08nnc or f08npc

no

Is the Schur factorization required?
yes

f08pnc or f08ppc

no

Are all eigenvectors required?
yes

f08nnc or f08npc

no

f02gcc

Tree 3: Singular Values and Singular Vectors

Is A a complex matrix?
yes

f08kpc

no

Are only the leading terms required?
yes

f02wgc

no

f08kbc

4.2 General Purpose Functions (Eigenvalues and Eigenvectors)

Functions for large sparse eigenvalue problems are to be found in Chapter f12, see the f12 Chapter
Introduction.

The decision tree for this section addressing dense problems, is divided into eight sub-trees:

Tree 1 Real Symmetric Eigenvalue Problems in the f08 Chapter Introduction

Tree 2 Real Generalized Symmetric-definite Eigenvalue Problems in the f08 Chapter Introduction

Tree 3 Real Nonsymmetric Eigenvalue Problems in the f08 Chapter Introduction

Tree 4 Real Generalized Nonsymmetric Eigenvalue Problems in the f08 Chapter Introduction

Tree 5 Complex Hermitian Eigenvalue Problems in the f08 Chapter Introduction

Tree 6 Complex Generalized Hermitian-definite Eigenvalue Problems in the f08 Chapter
Introduction

Tree 7 Complex non-Hermitian Eigenvalue Problems in the f08 Chapter Introduction
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Tree 8 Complex Generalized non-Hermitian Eigenvalue Problems in the f08 Chapter Introduction

As it is very unlikely that one of the functions in this section will be called on its own, the other
functions required to solve a given problem are listed in the order in which they should be called.

4.3 General Purpose Functions (Singular Value Decomposition)

See Section 4.2 in the f08 Chapter Introduction. For real sparse matrices where only selected singular
values are required (possibly with their singular vectors), functions from Chapter f12 may be applied to
the symmetric matrix ATA; see Section 10 in nag_real_symm_sparse_eigensystem_iter (f12fbc).

5 Functionality Index

Black Box functions,
complex eigenproblem,

selected eigenvalues and eigenvectors ............................ nag_complex_eigensystem_sel (f02gcc)
complex quadratic eigenproblem,

all eigenvalues and optionally eigenvectors, backward,
errors and eigenvalue condition numbers .................. nag_eigen_complex_gen_quad (f02jqc)

real eigenproblem,
selected eigenvalues and eigenvectors ................................... nag_real_eigensystem_sel (f02ecc)

real quadratic eigenproblem,
all eigenvalues and optionally eigenvectors, backward,

errors and eigenvalue condition numbers .......................... nag_eigen_real_gen_quad (f02jcc)
real sparse eigenproblem,

selected eigenvalues and eigenvectors .................... nag_eigen_real_gen_sparse_arnoldi (f02ekc)
real sparse symmetric matrix,

driver,
selected eigenvalues and eigenvectors ........... nag_eigen_real_symm_sparse_arnoldi (f02fkc)

General Purpose functions (see also Chapter f12),
real m by n matrix, leading terms SVD ........................................... nag_real_partial_svd (f02wgc)

6 Auxiliary Functions Associated with Library Function Arguments

None.

7 Functions Withdrawn or Scheduled for Withdrawal

The following lists all those functions that have been withdrawn since Mark 23 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Function

Mark of
Withdrawal Replacement Function(s)

nag_real_symm_eigenvalues (f02aac) 26 nag_dsyev (f08fac)
nag_real_symm_eigensystem (f02abc) 26 nag_dsyev (f08fac)
nag_real_symm_general_eigenvalues (f02adc) 26 nag_dsygv (f08sac)
nag_real_symm_general_eigensystem (f02aec) 26 nag_dsygv (f08sac)
nag_real_eigenvalues (f02afc) 26 nag_dgeev (f08nac)
nag_real_eigensystem (f02agc) 26 nag_dgeev (f08nac)
nag_hermitian_eigenvalues (f02awc) 26 nag_zheev (f08fnc)
nag_hermitian_eigensystem (f02axc) 26 nag_zheev (f08fnc)
nag_real_general_eigensystem (f02bjc) 26 nag_dggev (f08wac)
nag_real_svd (f02wec) 26 nag_dgesvd (f08kbc)
nag_complex_svd (f02xec) 26 nag_zgesvd (f08kpc)
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