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1 Scope of the Chapter

This chapter is concerned with the following tasks.

(a) Calculating the discrete Fourier transform of a sequence of real or complex data values.

(b) Calculating the discrete convolution or the discrete correlation of two sequences of real or
complex data values using discrete Fourier transforms.

(c) Calculating the inverse Laplace transform of a user-supplied subroutine.

(d) Calculating the fast Gauss transform approximation to the discrete Gauss transform.

(e) Direct summation of orthogonal series.

(f) Acceleration of convergence of a sequence of real values.

2 Background to the Problems

2.1 Discrete Fourier Transforms

2.1.1 Complex transforms

Most of the routines in this chapter calculate the finite discrete Fourier transform (DFT) of a
sequence of n complex numbers zj , for j ¼ 0; 1; . . . ; n� 1. The direct transform is defined by

ẑk ¼ 1ffiffiffi
n

p
Xn�1

j¼0

zj exp �i
2�jk

n

� �
ð1Þ

for k ¼ 0; 1; . . . ; n� 1. Note that equation (1) makes sense for all integral k and with this extension ẑk
is periodic with period n, i.e., ẑk ¼ ẑk�n, and in particular ẑ�k ¼ ẑn�k. Note also that the scale-factor of
1ffiffiffi
n

p may be omitted in the definition of the DFT, and replaced by
1

n
in the definition of the inverse.

If we write zj ¼ xj þ iyj and ẑk ¼ ak þ ibk, then the definition of ẑk may be written in terms of sines
and cosines as

ak ¼ 1ffiffiffi
n

p
Xn�1

j¼0

xj cos
2�jk

n

� �
þ yj sin

2�jk

n

� �� �

bk ¼ 1ffiffiffi
n

p
Xn�1

j¼0

yj cos
2�jk

n

� �
� xj sin

2�jk

n

� �� �
:

The original data values zj may conversely be recovered from the transform ẑk by an inverse discrete
Fourier transform:

zj ¼ 1ffiffiffi
n

p
Xn�1

k¼0

ẑk exp þi
2�jk

n

� �
ð2Þ

for j ¼ 0; 1; . . . ; n� 1. If we take the complex conjugate of (2), we find that the sequence �zj is the DFT
of the sequence �̂zk. Hence the inverse DFT of the sequence ẑk may be obtained by taking the complex
conjugates of the ẑk; performing a DFT, and taking the complex conjugates of the result. (Note that the
terms forward transform and backward transform are also used to mean the direct and inverse
transforms respectively.)

The definition (1) of a one-dimensional transform can easily be extended to multidimensional
transforms. For example, in two dimensions we have

ẑk1k2 ¼
1ffiffiffiffiffiffiffiffiffiffi
n1n2

p
Xn1�1

j1¼0

Xn2�1

j2¼0

zj1j2 exp �i
2�j1k1
n1

� �
exp �i

2�j2k2
n2

� �
: ð3Þ

Note: definitions of the discrete Fourier transform vary. Sometimes (2) is used as the definition of the
DFT, and (1) as the definition of the inverse.
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2.1.2 Real transforms

If the original sequence is purely real valued, i.e., zj ¼ xj, then

ẑk ¼ ak þ ibk ¼ 1ffiffiffi
n

p
Xn�1

j¼0

xj exp �i
2�jk

n

� �

and ẑn�k is the complex conjugate of ẑk. Thus the DFT of a real sequence is a particular type of
complex sequence, called a Hermitian sequence, or half-complex or conjugate symmetric, with the
properties

an�k ¼ ak bn�k ¼ �bk b0 ¼ 0

and, if n is even, bn=2 ¼ 0.

Thus a Hermitian sequence of n complex data values can be represented by only n, rather than 2n,
independent real values. This can obviously lead to economies in storage, with two schemes being used
in this chapter. In the first (deprecated) scheme, which will be referred to as the real storage format for
Hermitian sequences, the real parts ak for 0 � k � n=2 are stored in normal order in the first n=2þ 1
locations of an array x of length n; the corresponding nonzero imaginary parts are stored in reverse
order in the remaining locations of x. To clarify, if x is declared with bounds 0 : n� 1ð Þ in your calling
subroutine, the following two tables illustrate the storage of the real and imaginary parts of ẑk for the
two cases: n even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of x 0 1 2 . . . n=2 . . . n� 2 n� 1

Sequence a0 a1 þ ib1 a2 þ ib2 . . . an=2 . . . a2 � ib2 a1 � ib1

Stored values a0 a1 a2 . . . an=2 . . . b2 b1

xðkÞ ¼ ak; for k ¼ 0; 1; . . . ; n=2; and
xðn� kÞ ¼ bk; for k ¼ 1; 2; . . . ; n=2� 1:

If n is odd then the sequence has one purely real element and, letting n ¼ 2sþ 1, is stored as follows:

Index of x 0 1 2 . . . s sþ 1 . . . n� 2 n� 1

Sequence a0 a1 þ ib1 a2 þ ib2 . . . as þ ibs as � ibs . . . a2 � ib2 a1 � ib1

Stored values a0 a1 a2 . . . as bs . . . b2 b1

xðkÞ ¼ ak; for k ¼ 0; 1; . . . ; s; and
xðn� kÞ ¼ bk; for k ¼ 1; 2; . . . ; s:

The second (recommended) storage scheme, referred to in this chapter as the complex storage format
for Hermitian sequences, stores the real and imaginary parts ak; bk, for 0 � k � n=2, in consecutive
locations of an array x of length nþ 2. If x is declared with bounds 0 : nþ 1ð Þ in your calling
subroutine, the following two tables illustrate the storage of the real and imaginary parts of ẑk for the
two cases: n even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of x 0 1 2 3 . . . n� 2 n� 1 n nþ 1

Stored values a0 b0 ¼ 0 a1 b1 . . . an=2�1 bn=2�1 an=2 bn=2 ¼ 0

xð2� kÞ ¼ ak; for k ¼ 0; 1; . . . ; n=2; and
xð2� kþ 1Þ ¼ bk; for k ¼ 0; 1; . . . ; n=2:

If n is odd then the sequence has one purely real element and, letting n ¼ 2sþ 1, is stored as follows:
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Index of x 0 1 2 3 . . . n� 2 n� 1 n nþ 1

Stored values a0 b0 ¼ 0 a1 b1 . . . bs�1 as bs 0

xð2� kÞ ¼ ak; for k ¼ 0; 1; . . . ; s; and
xð2� kþ 1Þ ¼ bk; for k ¼ 0; 1; . . . ; s:

Also, given a Hermitian sequence, the inverse (or backward) discrete transform produces a real
sequence. That is,

xj ¼ 1ffiffiffi
n

p a0 þ 2
Xn=2�1

k¼1

ak cos
2�jk

n

� �
� bk sin

2�jk

n

� �� �
þ an=2

 !

where an=2 ¼ 0 if n is odd.

For real data that is two-dimensional or higher, the symmetry in the transform persists for the leading
dimension only. So, using the notation of equation (3) for the complex two-dimensional discrete
transform, we have that ẑk1k2 is the complex conjugate of ẑ n1�k1ð Þ n2�k2ð Þ. It is more convenient for
transformed data of two or more dimensions to be stored as a complex sequence of length
n1=2þ 1ð Þ � n2 � � � � � nd where d is the number of dimensions. The inverse discrete Fourier
transform operating on such a complex sequence (Hermitian in the leading dimension) returns a real
array of full dimension (n1 � n2 � � � � � nd).

2.1.3 Real symmetric transforms

In many applications the sequence xj will not only be real, but may also possess additional symmetries
which we may exploit to reduce further the computing time and storage requirements. For example, if
the sequence xj is odd, xj ¼ �xn�j

� �
, then the discrete Fourier transform of xj contains only sine

terms. Rather than compute the transform of an odd sequence, we define the sine transform of a real
sequence by

x̂k ¼
ffiffiffi
2

n

r Xn�1

j¼1

xj sin
�jk

n

� �
;

which could have been computed using the Fourier transform of a real odd sequence of length 2n. In
this case the xj are arbitrary, and the symmetry only becomes apparent when the sequence is extended.
Similarly we define the cosine transform of a real sequence by

x̂k ¼
ffiffiffi
2

n

r
1
2x0 þ

Xn�1

j¼1

xj cos
�jk

n

� �
þ 1

2 �1ð Þkxn

 !

which could have been computed using the Fourier transform of a real even sequence of length 2n.

In addition to these ‘half-wave’ symmetries described above, sequences arise in practice with ‘quarter-
wave’ symmetries. We define the quarter-wave sine transform by

x̂k ¼ 1ffiffiffi
n

p
Xn�1

j¼1

xj sin
�j 2k� 1ð Þ

2n

� �
þ 1

2 �1ð Þk�1xn

 !

which could have been computed using the Fourier transform of a real sequence of length 4n of the
form

0; x1; . . . ; xn; xn�1; . . . ; x1; 0;�x1; . . . ;�xn;�xn�1; . . . ;�x1ð Þ:
Similarly we may define the quarter-wave cosine transform by

x̂k ¼ 1ffiffiffi
n

p 1
2x0 þ

Xn�1

j¼1

xj cos
�j 2k� 1ð Þ

2n

� � !
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which could have been computed using the Fourier transform of a real sequence of length 4n of the
form

x0; x1; . . . ; xn�1; 0;�xn�1; . . . ;�x0;�x1; . . . ;�xn�1; 0; xn�1; . . . ; x1ð Þ:

2.1.4 Fourier integral transforms

The usual application of the discrete Fourier transform is that of obtaining an approximation of the
Fourier integral transform

F sð Þ ¼
Z 1

�1
f tð Þ exp �i2�stð Þ dt

when f tð Þ is negligible outside some region 0; cð Þ. Dividing the region into n equal intervals we have

F sð Þ ffi c

n

Xn�1

j¼0

fj exp
�i2�sjc

n

� �

and so

Fk ffi c

n

Xn�1

j¼0

fj exp
�i2�jk

n

� �

for k ¼ 0; 1; . . . ; n� 1, where fj ¼ f jc=nð Þ and Fk ¼ F k=cð Þ.
Hence the discrete Fourier transform gives an approximation to the Fourier integral transform in the
region s ¼ 0 to s ¼ n=c.

If the function f tð Þ is defined over some more general interval a; bð Þ, then the integral transform can
still be approximated by the discrete transform provided a shift is applied to move the point a to the
origin.

2.1.5 Convolutions and correlations

One of the most important applications of the discrete Fourier transform is to the computation of the
discrete convolution or correlation of two vectors x and y defined (as in Brigham (1974)) by

convolution: zk ¼
Xn�1

j¼0

xjyk�j

correlation: wk ¼
Xn�1

j¼0

�xjykþj

(Here x and y are assumed to be periodic with period n.)

Under certain circumstances (see Brigham (1974)) these can be used as approximations to the
convolution or correlation integrals defined by

z sð Þ ¼
Z 1

�1
x tð Þy s� tð Þ dt

and

w sð Þ ¼
Z 1

�1
�x tð Þy sþ tð Þ dt; �1 < s < 1:

For more general advice on the use of Fourier transforms, see Hamming (1962); more detailed
information on the fast Fourier transform algorithm can be found in Gentleman and Sande (1966) and
Brigham (1974).
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2.1.6 Applications to solving partial differential equations (PDEs)

A further application of the fast Fourier transform, and in particular of the Fourier transforms of
symmetric sequences, is in the solution of elliptic PDEs. If an equation is discretized using finite
differences, then it is possible to reduce the problem of solving the resulting large system of linear
equations to that of solving a number of tridiagonal systems of linear equations. This is accomplished
by uncoupling the equations using Fourier transforms, where the nature of the boundary conditions
determines the choice of transforms – see Section 3.3. Full details of the Fourier method for the
solution of PDEs may be found in Swarztrauber (1977) and Swarztrauber (1984).

2.2 Inverse Laplace Transforms

Let f tð Þ be a real function of t, with f tð Þ ¼ 0 for t < 0, and be piecewise continuous and of exponential
order �, i.e.,

f tð Þj j � Me�t

for large t, where � is the minimal such exponent.

The Laplace transform of f tð Þ is given by

F sð Þ ¼
Z 1

0
e�stf tð Þ dt; t > 0

where F sð Þ is defined for Re sð Þ > �.

The inverse transform is defined by the Bromwich integral

f tð Þ ¼ 1

2�i

Z aþi1

a�i1
estF sð Þ ds; t > 0:

The integration is performed along the line s ¼ a in the complex plane, where a > �. This is equivalent
to saying that the line s ¼ a lies to the right of all singularities of F sð Þ. For this reason, the value of �
is crucial to the correct evaluation of the inverse. It is not essential to know � exactly, but an upper
bound must be known.

The problem of determining an inverse Laplace transform may be classified according to whether (a)
F sð Þ is known for real values only, or (b) F sð Þ is known in functional form and can therefore be
calculated for complex values of s. Problem (a) is very ill-defined and no routines are provided. Two
methods are provided for problem (b).

2.3 Fast Gauss Transform

Gauss transforms have applications in areas including statistics, machine learning, and numerical
solution of the heat equation. The discrete Gauss transform (DGT), G yð Þ, evaluated at a set of target
points y jð Þ, for j ¼ 1; 2; . . . ;m 2 Rd, is defined as:

G yj
� � ¼Xn

i¼1

qie
� yj�xik k2

2
=h2

i ; j ¼ 1; . . . ;m

where xi, for i ¼ 1; 2; . . . ; n 2 Rd, are the Gaussian source points, qi, for i ¼ 1; 2; . . . ; n 2 Rþ, are the
source weights and hi, for i ¼ 1; 2; . . . ; n 2 Rþ, are the source standard deviations (alternatively source
scales or source bandwidths).

The fast Gauss transform (FGT) algorithm presented in Raykar and Duraiswami (2005) approximates
the DGT by using two Taylor series and clustering of the source points.

2.4 Direct Summation of Orthogonal Series

For any series of functions �i which satisfy a recurrence

�rþ1 xð Þ þ �r xð Þ�r xð Þ þ �r xð Þ�r�1 xð Þ ¼ 0

the sum
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Xn
r¼0

ar�r xð Þ

is given by

Xn
r¼0

ar�r xð Þ ¼ b0 xð Þ�0 xð Þ þ b1 xð Þ �1 xð Þ þ �0 xð Þ�0 xð Þð Þ

where

br xð Þ þ �r xð Þbrþ1 xð Þ þ �rþ1 xð Þbrþ2 xð Þ ¼ arbnþ1 xð Þ ¼ bnþ2 xð Þ ¼ 0:

This may be used to compute the sum of the series. For further reading, see Hamming (1962).

2.5 Acceleration of Convergence

This device has applications in a large number of fields, such as summation of series, calculation of
integrals with oscillatory integrands (including, for example, Hankel transforms), and root-finding. The
mathematical description is as follows. Given a sequence of values snf g, for n ¼ m; . . . ;mþ 2l, then,
except in certain singular cases, arguments, a, bi, ci may be determined such that

sn ¼ aþ
Xl
i¼1

bic
n
i :

If the sequence snf g converges, then a may be taken as an estimate of the limit. The method will also
find a pseudo-limit of certain divergent sequences – see Shanks (1955) for details.

To use the method to sum a series, the terms sn of the sequence should be the partial sums of the series,

e.g., sn ¼
Xn
k¼1

tk, where tk is the kth term of the series. The algorithm can also be used to some

advantage to evaluate integrals with oscillatory integrands; one approach is to write the integral (in this
case over a semi-infinite interval) asZ 1

0
f xð Þ dx ¼

Z a1

0
f xð Þ dxþ

Z a2

a1

f xð Þ dxþ
Z a3

a2

f xð Þ dxþ . . .

and to consider the sequence of values

s1 ¼
Z a1

0
f xð Þ dx; s2 ¼

Z a2

0
f xð Þ dx ¼ s1 þ

Z a2

a1

f xð Þ dx; etc:;

where the integrals are evaluated using standard quadrature methods. In choosing the values of the ak, it
is worth bearing in mind that c06baf converges much more rapidly for sequences whose values oscillate
about a limit. The ak should thus be chosen to be (close to) the zeros of f xð Þ, so that successive
contributions to the integral are of opposite sign. As an example, consider the case where
f xð Þ ¼ M xð Þ sinx and M xð Þ > 0: convergence will be much improved if ak ¼ k� rather than ak ¼ 2k�.

3 Recommendations on Choice and Use of Available Routines

The fast Fourier transform algorithm ceases to be ‘fast’ if applied to values of n which cannot be
expressed as a product of small prime factors. All the FFT routines in this chapter are particularly
efficient if the only prime factors of n are 2, 3 or 5.

3.1 One-dimensional Fourier Transforms

The choice of routine is determined first of all by whether the data values constitute a real, Hermitian or
general complex sequence. It is wasteful of time and storage to use an inappropriate routine.
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3.1.1 Real and Hermitian data

c06paf transforms a single sequence of real data onto (and in-place) a representation of the transformed
Hermitian sequence using the complex storage scheme described in Section 2.1.2. c06paf also
performs the inverse transform using the representation of Hermitian data and transforming back to a
real data sequence.

Alternatively, the two-dimensional routine c06pvf can be used (on setting the second dimension to 1) to
transform a sequence of real data onto an Hermitian sequence whose first half is stored in a separate
Complex array. The second half need not be stored since these are the complex conjugate of the first
half in reverse order. c06pwf performs the inverse operation, transforming the the Hermitian sequence
(half-)stored in a Complex array onto a separate real array.

3.1.2 Complex data

c06pcf transforms a single complex sequence in-place; it also performs the inverse transform. c06psf
transforms multiple complex sequences, each stored sequentially; it also performs the inverse transform
on multiple complex sequences. This routine is designed to perform several transforms in a single call,
all with the same value of n.

If extensive use is to be made of these routines and you are concerned about efficiency, you are advised
to conduct your own timing tests.

3.2 Half- and Quarter-wave Transforms

Four routines are provided for computing fast Fourier transforms (FFTs) of real symmetric sequences.
c06ref computes multiple Fourier sine transforms, c06rff computes multiple Fourier cosine transforms,
c06rgf computes multiple quarter-wave Fourier sine transforms, and c06rhf computes multiple quarter-
wave Fourier cosine transforms.

3.3 Application to Elliptic Partial Differential Equations

As described in Section 2.1.6, Fourier transforms may be used in the solution of elliptic PDEs.

c06ref may be used to solve equations where the solution is specified along the boundary.

c06rff may be used to solve equations where the derivative of the solution is specified along the
boundary.

c06rgf may be used to solve equations where the solution is specified on the lower boundary, and the
derivative of the solution is specified on the upper boundary.

c06rhf may be used to solve equations where the derivative of the solution is specified on the lower
boundary, and the solution is specified on the upper boundary.

For equations with periodic boundary conditions the full-range Fourier transforms computed by c06paf
are appropriate.

3.4 Multidimensional Fourier Transforms

The following routines compute multidimensional discrete Fourier transforms of real, Hermitian and
complex data stored in complex arrays:

real Hermitian complex
2 dimensions c06pvf c06pwf c06puf
3 dimensions c06pyf c06pzf c06pxf
any number of dimensions c06pjf

The Hermitian data, either transformed from or being transformed to real data, is compacted (due to
symmetry) along its first dimension when stored in Complex arrays; thus approximately half the full
Hermitian data is stored.

c06puf and c06pxf should be used in preference to c06pjf for two- and three-dimensional transforms,
as they are easier to use and are likely to be more efficient.
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The transform of multidimensional real data is stored as a complex sequence that is Hermitian in its
leading dimension. The inverse transform takes such a complex sequence and computes the real
transformed sequence. Consequently, separate routines are provided for performing forward and inverse
transforms.

c06pvf performs the forward two-dimensionsal transform while c06pwf performs the inverse of this
transform.

c06pyf performs the forward three-dimensional transform while c06pzf performs the inverse of this
transform.

The complex sequences computed by c06pvf and c06pyf contain roughly half of the Fourier
coefficients; the remainder can be reconstructed by conjugation of those computed. For example, the
Fourier coefficients of the two-dimensional transform ẑ n1�k1ð Þk2 are the complex conjugate of ẑk1k2 for
k1 ¼ 0; 1; . . . ; n1=2, and k2 ¼ 0; 1; . . . ; n2 � 1.

3.5 Convolution and Correlation

c06fkf computes either the discrete convolution or the discrete correlation of two real vectors.

c06pkf computes either the discrete convolution or the discrete correlation of two complex vectors.

3.6 Inverse Laplace Transforms

Two methods are provided: Weeks' method (c06lbf) and Crump's method (c06laf). Both require the
function F sð Þ to be evaluated for complex values of s. If in doubt which method to use, try Weeks'
method (c06lbf) first; when it is suitable, it is usually much faster.

Typically the inversion of a Laplace transform becomes harder as t increases so that all numerical
methods tend to have a limit on the range of t for which the inverse f tð Þ can be computed. c06laf is
useful for small and moderate values of t.

It is often convenient or necessary to scale a problem so that � is close to 0. For this purpose it is
useful to remember that the inverse of F sþ kð Þ is exp �ktð Þf tð Þ. The method used by c06laf is not so
satisfactory when f tð Þ is close to zero, in which case a term may be added to F sð Þ, e.g., k=sþ F sð Þ has
the inverse kþ f tð Þ.
Singularities in the inverse function f tð Þ generally cause numerical methods to perform less well. The
positions of singularities can often be identified by examination of F sð Þ. If F sð Þ contains a term of the
form exp �ksð Þ=s then a finite discontinuity may be expected in the inverse at t ¼ k. c06laf, for
example, is capable of estimating a discontinuous inverse but, as the approximation used is continuous,
Gibbs' phenomena (overshoots around the discontinuity) result. If possible, such singularities of F sð Þ
should be removed before computing the inverse.

3.7 Fast Gauss Transform

The only routine available is c06saf. If the dimensionality of the data is low or the number of source
and target points is small, however, it may be more efficient to evaluate the discrete Gauss transform
directly.

3.8 Direct Summation of Orthogonal Series

The only routine available is c06dcf, which sums a finite Chebyshev series

Xn
j¼0

cjTj xð Þ;
Xn
j¼0

cjT2j xð Þ or
Xn
j¼0

cjT2jþ1 xð Þ

depending on the choice of argument.

3.9 Acceleration of Convergence

The only routine available is c06baf.
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4 Decision Trees

Tree 1: Fourier Transform of Discrete Complex Data

Is the data one-dimensional?
yes

Multiple vectors?
yes

Stored as rows?
yes

c06prf

no

Stored as columns?
yes

c06psf

no

c06pcf

no

Is the data two-dimensional?
yes

c06puf

no

Is the data three-
dimensional? yes

c06pxf

no

Transform on one dimension
only? yes

c06pff

no

Transform on all
dimensions? yes

c06pjf

Tree 2: Fourier Transform of Real Data or Data in Complex Hermitian Form Resulting from the
Transform of Real Data

Quarter-wave sine (inverse) transform?
yes

c06rgf

no

Quarter-wave cosine (inverse)
transform? yes

c06rhf

no

Sine (inverse) transform?
yes

c06ref

no

Cosine (inverse) transform?
yes

c06rff

no

Is the data three-dimensional?
yes

Forward transform on real data?
yes

c06pyf

no

Inverse transform on Hermitian data?
yes

c06pzf

no

Is the data two-dimensional?
yes

Forward transform on real data?
yes

c06pvf

no

Inverse transform on Hermitian data?
yes

c06pwf

no

Is the data multi one-dimensional?
yes

Sequences stored by row?
yes

c06ppf

no

Sequences stored by column?
yes

c06pqf

no

c06paf

5 Functionality Index

Acceleration of convergence ................................................................................................... c06baf

Convolution or Correlation,
complex vectors ................................................................................................................. c06pkf
real vectors,

time-saving.................................................................................................................... c06fkf
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Discrete Fourier Transform,
multidimensional,

complex sequence,
complex storage ....................................................................................................... c06pjf
real storage .............................................................................................................. c06fjf

multiple half- and quarter-wave transforms,
Fourier cosine transforms,

simple use ................................................................................................................ c06rbf
Fourier cosine transforms, simple use........................................................................... c06rff
Fourier sine transforms,

simple use ................................................................................................................ c06raf
Fourier sine transforms, simple use .............................................................................. c06ref
quarter-wave cosine transforms,

simple use ................................................................................................................ c06rdf
quarter-wave cosine transforms, simple use .................................................................. c06rhf
quarter-wave sine transforms,

simple use ................................................................................................................ c06rcf
quarter-wave sine transforms, simple use ..................................................................... c06rgf

one-dimensional,
multiple transforms,

complex sequence,
complex storage by columns............................................................................... c06psf
complex storage by rows .................................................................................... c06prf

Hermitian/real sequence,
complex storage by columns............................................................................... c06pqf
complex storage by rows .................................................................................... c06ppf

multi-variable,
complex sequence,

complex storage .................................................................................................. c06pff
real storage ......................................................................................................... c06fff

single transforms,
complex sequence,

time-saving,
complex storage ............................................................................................. c06pcf
real storage .................................................................................................... c06fcf

Hermitian/real sequence,
time-saving,

complex storage ............................................................................................. c06paf
Hermitian sequence,

time-saving,
real storage .................................................................................................... c06fbf

real sequence,
time-saving,

real storage .................................................................................................... c06faf
three-dimensional,

complex sequence,
complex storage ....................................................................................................... c06pxf
real storage .............................................................................................................. c06fxf

Hermitian/real sequence,
complex-to-real ........................................................................................................ c06pzf
real-to-complex ........................................................................................................ c06pyf

two-dimensional,
complex sequence,

complex storage ....................................................................................................... c06puf
Hermitian/real sequence,

complex-to-real ........................................................................................................ c06pwf
real-to-complex ........................................................................................................ c06pvf

Fast Gauss Transform ............................................................................................................. c06saf
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Inverse Laplace Transform,
Crump's method ................................................................................................................. c06laf
Weeks' method,

compute coefficients of solution ................................................................................... c06lbf
evaluate solution ........................................................................................................... c06lcf

Summation of Chebyshev series ............................................................................................. c06dcf

6 Auxiliary Routines Associated with Library Routine Arguments

None.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

c06dbf 25 c06dcf
c06eaf 26 c06paf
c06ebf 26 c06paf
c06ecf 26 c06pcf
c06ekf 26 c06fkf
c06fpf 28 c06pqf
c06fqf 28 c06pqf
c06frf 26 c06psf
c06fuf 26 c06puf
c06gbf 26 No replacement required
c06gcf 26 No replacement required
c06gqf 26 No replacement required
c06gsf 26 No replacement required
c06haf 26 c06ref
c06hbf 26 c06rff
c06hcf 26 c06rgf
c06hdf 26 c06rhf

8 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Davies S B and Martin B (1979) Numerical inversion of the Laplace transform: A survey and
comparison of methods J. Comput. Phys. 33 1–32

Fox L and Parker I B (1968) Chebyshev Polynomials in Numerical Analysis Oxford University Press

Gentleman W S and Sande G (1966) Fast Fourier transforms for fun and profit Proc. Joint Computer
Conference, AFIPS 29 563–578

Hamming R W (1962) Numerical Methods for Scientists and Engineers McGraw–Hill

Raykar V C and Duraiswami R (2005) Improved Fast Gauss Transform With Variable Source Scales
University of Maryland Technical Report CS-TR-4727/UMIACS-TR-2005-34

Shanks D (1955) Nonlinear transformations of divergent and slowly convergent sequences J. Math.
Phys. 34 1–42

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501

Swarztrauber P N (1984) Fast Poisson solvers Studies in Numerical Analysis (ed G H Golub)
Mathematical Association of America

Introduction – C06 NAG Library Manual

C06.12 Mark 26.1



Swarztrauber P N (1986) Symmetric FFT's Math. Comput. 47(175) 323–346

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10
91–96

C06 – Summation of Series Introduction – C06

Mark 26.1 C06.13 (last)


	C06 - Summation of Series, Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Discrete Fourier Transforms
	2.1.1 Complex transforms
	2.1.2 Real transforms
	2.1.3 Real symmetric transforms
	2.1.4 Fourier integral transforms
	2.1.5 Convolutions and correlations
	2.1.6 Applications to solving partial differential equations (PDEs)

	2.2 Inverse Laplace Transforms
	2.3 Fast Gauss Transform
	2.4 Direct Summation of Orthogonal Series
	2.5 Acceleration of Convergence

	3 Recommendations on Choice and Use of Available Routines
	3.1 One-dimensional Fourier Transforms
	3.1.1 Real and Hermitian data
	3.1.2 Complex data

	3.2 Half- and Quarter-wave Transforms
	3.3 Application to Elliptic Partial Differential Equations
	3.4 Multidimensional Fourier Transforms
	3.5 Convolution and Correlation
	3.6 Inverse Laplace Transforms
	3.7 Fast Gauss Transform
	3.8 Direct Summation of Orthogonal Series
	3.9 Acceleration of Convergence

	4 Decision Trees
	Tree 1
	Tree 2

	5 Functionality Index
	6 Auxiliary Routines Associated with Library Routine Arguments
	7 Routines Withdrawn or Scheduled for Withdrawal
	8 References
	Brigham (1974)
	Davies and Martin (1979)
	Fox and Parker (1968)
	Gentleman and Sande (1966)
	Hamming (1962)
	Raykar and Duraiswami (2005)
	Shanks (1955)
	Swarztrauber (1977)
	Swarztrauber (1984)
	Swarztrauber (1986)
	Wynn (1956)


	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction




