NAG Library Routine Document F08BAF (DGELSY)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08BAF (DGELSY) computes the minimum norm solution to a real linear least squares problem

$$
\min _{x}\|b-A x\|_{2}
$$

using a complete orthogonal factorization of $A . A$ is an m by n matrix which may be rank-deficient. Several right-hand side vectors b and solution vectors x can be handled in a single call.

2 Specification

```
SUBROUTINE FO8BAF (M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK,
    LWORK, INFO)
INTEGER M, N, NRHS, LDA, LDB, JPVT(*), RANK, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), RCOND, WORK(max (1,LWORK))
```

The routine may be called by its LAPACK name dgelsy.

3 Description

The right-hand side vectors are stored as the columns of the m by r matrix B and the solution vectors in the n by r matrix X.
F08BAF (DGELSY) first computes a $Q R$ factorization with column pivoting

$$
A P=Q\left(\begin{array}{rr}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right)
$$

with R_{11} defined as the largest leading sub-matrix whose estimated condition number is less than $1 /$ RCOND. The order of R_{11}, RANK, is the effective rank of A.

Then, R_{22} is considered to be negligible, and R_{12} is annihilated by orthogonal transformations from the right, arriving at the complete orthogonal factorization

$$
A P=Q\left(\begin{array}{rr}
T_{11} & 0 \\
0 & 0
\end{array}\right) Z
$$

The minimum norm solution is then

$$
X=P Z^{\mathrm{T}}\binom{T_{11}^{-1} Q_{1}^{\mathrm{T}} b}{0}
$$

where Q_{1} consists of the first RANK columns of Q.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: M - INTEGER
On entry: m, the number of rows of the matrix A.
Constraint: $\mathrm{M} \geq 0$.
2: N - INTEGER
On entry: n, the number of columns of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
3: NRHS - INTEGER
Input
On entry: r, the number of right-hand sides, i.e., the number of columns of the matrices B and X.
Constraint: NRHS ≥ 0.
4: $\mathrm{A}(\mathrm{LDA}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the m by n matrix A.
On exit: A has been overwritten by details of its complete orthogonal factorization.
5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08BAF (DGELSY) is called.
Constraint: LDA $\geq \max (1, \mathrm{M})$.
6: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array B must be at least max (1, NRHS).
On entry: the m by r right-hand side matrix B.
On exit: the n by r solution matrix X.
7: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F08BAF (DGELSY) is called.
Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{M}, \mathrm{N})$.
8: $\quad \operatorname{JPVT}(*)$ - INTEGER array
Input/Output
Note: the dimension of the array JPVT must be at least $\max (1, \mathrm{~N})$.
On entry: if $\operatorname{JPVT}(i) \neq 0$, the i th column of A is permuted to the front of $A P$, otherwise column i is a free column.
On exit: if $\operatorname{JPVT}(i)=k$, then the i th column of $A P$ was the k th column of A.
9: \quad RCOND - REAL (KIND=nag_wp)
Input
On entry: used to determine the effective rank of A, which is defined as the order of the largest leading triangular sub-matrix R_{11} in the $Q R$ factorization of A, whose estimated condition number is $<1 /$ RCOND.
Suggested value: if the condition number of A is not known then RCOND $=\sqrt{(\epsilon) / 2}$ (where ϵ is machine precision, see X 02 AJF) is a good choice. Negative values or values less than machine
precision should be avoided since this will cause A to have an effective rank $=\min (M, N)$ that could be larger than its actual rank, leading to meaningless results.

10: RANK - INTEGER
Output
On exit: the effective rank of A, i.e., the order of the sub-matrix R_{11}. This is the same as the order of the sub-matrix T_{11} in the complete orthogonal factorization of A.

11: $\operatorname{WORK}(\max (1, \operatorname{LWORK}))-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
On exit: if $\operatorname{INFO}=0$, $\mathrm{WORK}(1)$ contains the minimum value of LWORK required for optimal performance.

12: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)program from which F08BAF (DGELSY) is called.

If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Suggested value: for optimal performance,

$$
\text { LWORK } \geq \max (k+2 \times \mathrm{N}+n b \times(\mathrm{N}+1), 2 \times k+n b \times \text { NRHS })
$$

where $k=\min (\mathrm{M}, \mathrm{N})$ and $n b$ is the optimal block size.
Constraint: LWORK $\geq k+\max (2 \times k, \mathrm{~N}+1, k+\mathrm{NRHS})$, where $k=\min (\mathrm{M}, \mathrm{N})$ or LWORK $=-1$.

13: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

$\mathrm{INFO}<0$
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

See Section 4.5 of Anderson et al. (1999) for details of error bounds.

8 Parallelism and Performance

F08BAF (DGELSY) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

F08BAF (DGELSY) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08BNF (ZGELSY).

10 Example

This example solves the linear least squares problem

$$
\min _{x}\|b-A x\|_{2}
$$

for the solution, x, of minimum norm, where

$$
A=\left(\begin{array}{rrrrr}
-0.09 & 0.14 & -0.46 & 0.68 & 1.29 \\
-1.56 & 0.20 & 0.29 & 1.09 & 0.51 \\
-1.48 & -0.43 & 0.89 & -0.71 & -0.96 \\
-1.09 & 0.84 & 0.77 & 2.11 & -1.27 \\
0.08 & 0.55 & -1.13 & 0.14 & 1.74 \\
-1.59 & -0.72 & 1.06 & 1.24 & 0.34
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
7.4 \\
4.2 \\
-8.3 \\
1.8 \\
8.6 \\
2.1
\end{array}\right)
$$

A tolerance of 0.01 is used to determine the effective rank of A.
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but should be suitable for large problems.

10.1 Program Text

Program f08bafe
! FO8BAF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
! .. Use Statements ..
Use nag_library, Only: dgelsy, nag_wp
.. Implicit None Statement ..
Implicit None
.. Parameters ..
Integer, Parameter $\quad:: \mathrm{nb}=64$, nin $=5$, nout $=6$
.. Local Scalars ..
Real (Kind=nag_wp) : : rcond
Integer : : i, info, lda, lwork, m, n, rank
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : a(:,:), b(:), work(:) Integer, Allocatable : jpvt(:)
.. Executable Statements ..
Write (nout,*) 'FO8BAF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m lwork $=3 *_{n}+n b *(n+1)$ Allocate (a(lda,n),b(m), work(lwork), jpvt(n))
! Read A and B from data file
Read (nin,*) (a(i, 1:n), i=1,m)
Read (nin,*) b(1:m)
! Initialize JPVT to be zero so that all columns are free
jpvt(1:n) $=0$
! Choose RCOND to reflect the relative accuracy of the input data
rcond $=0.01 _$nag_wp
Solve the least squares problem min(norm2(b - Ax)) for the x of minimum norm.
! The NAG name equivalent of dgelsy is f08baf Call dgelsy(m,n,1,a,lda,b,m,jpvt,rcond,rank,work,lwork,info)

```
! Print solution
    Write (nout,*) 'Least squares solution'
    Write (nout,99999) b(1:n)
    Print the effective rank of A
    Write (nout,*)
    Write (nout,*) 'Tolerance used to estimate the rank of A'
    Write (nout,99998) rcond
    Write (nout,*) 'Estimated rank of A'
    Write (nout,99997) rank
99999 Format (1X,7F11.4)
99998 Format (3X,1P,E11.2)
99997 Format (1X,I6)
    End Program f08bafe
```


10.2 Program Data

F08BAF Example Program Data

6	5				:Values of M and N
-0.09	0.14	-0.46	0.68	1.29	
-1.56	0.20	0.29	1.09	0.51	
-1.48	-0.43	0.89	-0.71	-0.96	
-1.09	0.84	0.77	2.11	-1.27	
0.08	0.55	-1.13	0.14	1.74	
-1.59	-0.72	1.06	1.24	0.34	: End of matrix A
7.4					
4.2					
-8.3					
1.8					
8.6					
2.1					:End of vector b

10.3 Program Results

```
FO8BAF Example Program Results
Least squares solution
    0.6344 0.9699 -1.4402 3.3678 3.3992
Tolerance used to estimate the rank of A
    1.00E-02
Estimated rank of A
    4
```

