NAG Library Routine Document
 G13AUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G13AUF calculates the range (or standard deviation) and the mean for groups of successive time series values. It is intended for use in the construction of range-mean plots.

2 Specification

```
SUBROUTINE G13AUF (N, Z, M, NGRPS, RS, Y, MEAN, IFAIL)
INTEGER N, M, NGRPS, IFAIL
REAL (KIND=nag_wp) Z(N), Y(NGRPS), MEAN (NGRPS )
CHARACTER(1) RS
```


3 Description

Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ denote n successive observations in a time series. The series may be divided into groups of m successive values and for each group the range or standard deviation (depending on a usersupplied option) and the mean are calculated. If n is not a multiple of m then groups of equal size m are found starting from the end of the series of observations provided, and any remaining observations at the start of the series are ignored. The number of groups used, k, is the integer part of n / m. If you wish to ensure that no observations are ignored then the number of observations, n, should be chosen so that n is divisible by m.

The mean, M_{i}, the range, R_{i}, and the standard deviation, S_{i}, for the i th group are defined as

$$
\begin{gathered}
M_{i}=\frac{1}{m} \sum_{j=1}^{m} Z_{l+m(i-1)+j} \\
R_{i}=\max _{1 \leq j \leq m}\left\{Z_{l+m(i-1)+j}\right\}-\min _{1 \leq j \leq m}\left\{Z_{l+m(i-1)+j}\right\}
\end{gathered}
$$

and

$$
S_{i}=\sqrt{\left(\frac{1}{m-1}\right) \sum_{j=1}^{m}\left(Z_{l+m(i-1)+j}-M_{i}\right)^{2}}
$$

where $l=n-k m$, the number of observations ignored.
For seasonal data it is recommended that m should be equal to the seasonal period. For non-seasonal data the recommended group size is 8 .
A plot of range against mean or of standard deviation against mean is useful for finding a transformation of the series which makes the variance constant. If the plot appears random or the range (or standard deviation) seems to be constant irrespective of the mean level then this suggests that no transformation of the time series is called for. On the other hand an approximate linear relationship between range (or standard deviation) and mean would indicate that a log transformation is appropriate. Further details may be found in either Jenkins (1979) or McLeod (1982).

You have the choice of whether to use the range or the standard deviation as a measure of variability. If the group size is small they are both equally good but if the group size is fairly large (e.g., $m=12$ for monthly data) then the range may not be as good an estimate of variability as the standard deviation.

4 References

Jenkins G M (1979) Practical Experiences with Modelling and Forecasting Time Series GJP Publications, Lancaster

McLeod G (1982) Box-Jenkins in Practice. 1: Univariate Stochastic and Single Output Transfer Function/Noise Analysis GJP Publications, Lancaster

5 Arguments

1: N - INTEGER
Input
On entry: n, the number of observations in the time series.
Constraint: $\mathrm{N} \geq \mathrm{M}$.
2: $\quad \mathrm{Z}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Input
On entry: $\mathrm{Z}(t)$ must contain the t th observation Z_{t}, for $t=1,2, \ldots, n$.
3: M - INTEGER
Input
On entry: m, the group size.
Constraint: $\mathrm{M} \geq 2$.

4: NGRPS - INTEGER
On entry: k, the number of groups.
Constraint: $\mathrm{NGRPS}=\operatorname{int}(\mathrm{N} / \mathrm{M})$.
5: RS - CHARACTER(1)
Input
On entry: indicates whether ranges or standard deviations are to be calculated.
$R S=$ 'R'
Ranges are calculated.
$R S=$ 'S'
Standard deviations are calculated.
Constraint: RS = 'R' or 'S'.
6: $\quad \mathrm{Y}($ NGRPS $)-$ REAL (KIND=nag_wp) array
Output
On exit: $\mathrm{Y}(i)$ contains the range or standard deviation, as determined by RS, of the i th group of observations, for $i=1,2, \ldots, k$.

Output
On exit: MEAN (i) contains the mean of the i th group of observations, for $i=1,2, \ldots, k$.
8: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{N}<\mathrm{M}$,
or $\quad \mathrm{M}<2$,
or \quad NGRPS \neq integer part of N / M.
IFAIL $=2$
On entry, RS is not equal to ' R ' or ' S '.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

G13AUF is not threaded in any implementation.

9 Further Comments

The time taken by G13AUF is approximately proportional to n.

10 Example

The following program produces the statistics for a range-mean plot for a series of 100 observations divided into groups of 8 .

10.1 Program Text

```
    Program gl3aufe
    G13AUF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: gl3auf, nag_wp
! .. Implicit None Statement ..
    Implicit None
```

```
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Integer :: i, ifail, m, n, ngrps
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: mean(:), y(:), z(:)
    .. Executable Statements ..
    Write (nout,*) 'G13AUF Example Program Results'
    Write (nout,*)
! Skip heading in data file
    Read (nin,*)
! Read in the problem size
    Read (nin,*) n, m
    ngrps = n/m
    Allocate (z(n),y(ngrps),mean(ngrps))
! Read in data
    Read (nin,*) z(1:n)
! Calculate summary statistics
    ifail = 0
    Call g13auf(n,z,m,ngrps,'RANGE',y,mean,ifail)
! Display title
    Write (*,*) , Mean Range'
    Write (*,*) '
    Do i = 1, ngrps
    Write (nout,99999) mean(i), y(i)
    End Do
99999 Format (2(1X,F10.3))
    End Program gl3aufe
```


10.2 Program Data

G13AUF	Example Program Data			
100 8				
101.0	82.0	66.0	35.0	31.0
6.0	20.0	90.0	154.0	125.0
85.0	68.0	38.0	23.0	10.0
24.0	83.0	133.0	131.0	118.0
90.0	67.0	60.0	47.0	41.0
21.0	16.0	6.0	4.0	7.0
14.0	34.0	45.0	43.0	49.0
42.0	28.0	10.0	5.0	2.0
0.0	1.0	3.0	12.0	14.0
35.0	47.0	41.0	30.0	24.0
16.0	7.0	4.0	2.0	8.0
13.0	36.0	50.0	62.0	67.0
72.0	48.0	29.0	8.0	13.0
57.0	122.0	139.0	103.0	86.0
63.0	37.0	26.0	11.0	15.0
40.0	62.0	98.0	124.0	96.0
65.0	64.0	54.0	39.0	21.0
7.0	4.0	23.0	53.0	94.0
96.0	77.0	59.0	44.0	47.0
30.0	16.0	7.0	37.0	74.0

10.3 Program Results

G13AUF Example Program Results

Mean	Range
72.375	148.000
70.000	123.000

43.500	84.000
29.750	45.000
7.625	28.000
26.750	40.000
30.250	65.000
61.000	131.000
47.625	92.000
75.250	85.000
46.875	92.000
39.250	67.000

Example Program
Plot of Range vs Mean (Y vs Mean)

