NAG Library Routine Document
 G13EAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G13EAF performs a combined measurement and time update of one iteration of the time-varying Kalman filter using a square root covariance filter.

2 Specification

```
SUBROUTINE GI3EAF (N, M, L, A, LDS, B, STQ, Q, LDQ, C, LDM, R, S, K, H, &
        TOL, IWK, WK, IFAIL)
INTEGER N, M, L, LDS, LDQ, LDM, IWK(M), IFAIL
REAL (KIND=nag_wp) A(LDS,N), B (LDS,L), Q(LDQ,*), C(LDM,N), R(LDM,M), &
    S(LDS,N), K(LDS,M), H(LDM,M), TOL, &
    WK ((N+M)* (N+M+L))
LOGICAL
    STQ
```


3 Description

The Kalman filter arises from the state space model given by:

$$
\begin{array}{ll}
X_{i+1}=A_{i} X_{i}+B_{i} W_{i}, & \operatorname{Var}\left(W_{i}\right)=Q_{i} \\
Y_{i}=C_{i} X_{i}+V_{i}, & \operatorname{Var}\left(V_{i}\right)=R_{i}
\end{array}
$$

where X_{i} is the state vector of length n at time i, Y_{i} is the observation vector of length m at time i, and W_{i} of length l and V_{i} of length m are the independent state noise and measurement noise respectively.
The estimate of X_{i} given observations Y_{1} to Y_{i-1} is denoted by $\hat{X}_{i \mid i-1}$ with state covariance matrix $\operatorname{Var}\left(\hat{X}_{i \mid i-1}\right)=P_{i \mid i-1}=S_{i} S_{i}^{\mathrm{T}}$, while the estimate of X_{i} given observations Y_{1} to Y_{i} is denoted by $\hat{X}_{i \mid i}$ with covariance matrix $\operatorname{Var}\left(\hat{X}_{i \mid i}\right)=P_{i \mid i}$. The update of the estimate, $\hat{X}_{i \mid i-1}$, from time i to time $(i+1)$, is computed in two stages. First, the measurement-update is given by

$$
\begin{equation*}
\hat{X}_{i \mid i}=\hat{X}_{i \mid i-1}+K_{i}\left[Y_{i}-C_{i} \hat{X}_{i \mid i-1}\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{i \mid i}=\left[I-K_{i} C_{i}\right] P_{i \mid i-1} \tag{2}
\end{equation*}
$$

where $K_{i}=P_{i \mid i-1} C_{i}^{\mathrm{T}}\left[C_{i} P_{i \mid i-1} C_{i}^{\mathrm{T}}+R_{i}\right]^{-1}$ is the Kalman gain matrix. The second stage is the timeupdate for X which is given by

$$
\begin{equation*}
\hat{X}_{i+1 \mid i}=A_{i} \hat{X}_{i \mid i}+D_{i} U_{i} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{i+1 \mid i}=A_{i} P_{i \mid i} A_{i}^{\mathrm{T}}+B_{i} Q_{i} B_{i}^{\mathrm{T}} \tag{4}
\end{equation*}
$$

where $D_{i} U_{i}$ represents any deterministic control used.
The square root covariance filter algorithm provides a stable method for computing the Kalman gain matrix and the state covariance matrix. The algorithm can be summarised as

$$
\left(\begin{array}{ccc}
R_{i}^{1 / 2} & C_{i} S_{i} & 0 \tag{5}\\
0 & A_{i} S_{i} & B_{i} Q_{i}^{1 / 2}
\end{array}\right) U=\left(\begin{array}{ccc}
H_{i}^{1 / 2} & 0 & 0 \\
G_{i} & S_{i+1} & 0
\end{array}\right)
$$

where U is an orthogonal transformation triangularizing the left-hand pre-array to produce the righthand post-array. The relationship between the Kalman gain matrix, K_{i}, and G_{i} is given by

$$
A_{i} K_{i}=G_{i}\left(H_{i}^{1 / 2}\right)^{-1}
$$

G13EAF requires the input of the lower triangular Cholesky factors of the noise covariance matrices $R_{i}^{1 / 2}$ and, optionally, $Q_{i}^{1 / 2}$ and the lower triangular Cholesky factor of the current state covariance matrix, S_{i}, and returns the product of the matrices A_{i} and $K_{i}, A_{i} K_{i}$, the Cholesky factor of the updated state covariance matrix S_{i+1} and the matrix $H_{i}^{1 / 2}$ used in the computation of the likelihood for the model.

4 References

Vanbegin M, van Dooren P and Verhaegen M H G (1989) Algorithm 675: FORTRAN subroutines for computing the square root covariance filter and square root information filter in dense or Hessenberg forms ACM Trans. Math. Software 15 243-256

Verhaegen M H G and van Dooren P (1986) Numerical aspects of different Kalman filter implementations IEEE Trans. Auto. Contr. AC-31 907-917

5 Arguments

1: N - INTEGER Input
On entry: n, the size of the state vector.
Constraint: $\mathrm{N} \geq 1$.
2: M - INTEGER
Input
On entry: m, the size of the observation vector.
Constraint: $\mathrm{M} \geq 1$.

3: \quad L - INTEGER
Input
On entry: l, the dimension of the state noise.
Constraint: $\mathrm{L} \geq 1$.

4: $\mathrm{A}(\mathrm{LDS}, \mathrm{N})$ - REAL (KIND=nag_wp) array Input
On entry: the state transition matrix, A_{i}.
5: LDS - INTEGER
Input
On entry: the first dimension of the arrays $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and K as declared in the (sub)program from which G13EAF is called.

Constraint: $\mathrm{LDS} \geq \mathrm{N}$.
6: $\quad \mathrm{B}(\mathrm{LDS}, \mathrm{L})$ - REAL (KIND=nag_wp) array
Input
On entry: the noise coefficient matrix B_{i}.

7: \quad STQ - LOGICAL
Input
On entry: if $\mathrm{STQ}=$.TRUE., the state noise covariance matrix Q_{i} is assumed to be the identity matrix. Otherwise the lower triangular Cholesky factor, $Q_{i}^{1 / 2}$, must be provided in Q .

8: $\quad \mathrm{Q}(\mathrm{LDQ}, *)$ - REAL (KIND=nag_wp) array
Note: the second dimension of the array Q must be at least L if $\mathrm{STQ}=$.FALSE. and at least 1 if STQ = .TRUE..
On entry: if STQ = .FALSE., Q must contain the lower triangular Cholesky factor of the state noise covariance matrix, $Q_{i}^{1 / 2}$. Otherwise Q is not referenced.

9: LDQ - INTEGER
Input
On entry: the first dimension of the array Q as declared in the (sub)program from which G13EAF is called.

Constraints:
if $\mathrm{STQ}=$. FALSE., $\mathrm{LDQ} \geq \mathrm{L}$;
otherwise $\mathrm{LDQ} \geq 1$.
10: $\quad \mathrm{C}(\mathrm{LDM}, \mathrm{N})-$ REAL (KIND=$=$ nag_wp) array
Input
On entry: the measurement coefficient matrix, C_{i}.
11: LDM - INTEGER Input
On entry: the first dimension of the arrays C, R and H as declared in the (sub)program from which G13EAF is called.

Constraint: $\mathrm{LDM} \geq \mathrm{M}$.

12: $\quad \mathrm{R}(\mathrm{LDM}, \mathrm{M})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: the lower triangular Cholesky factor of the measurement noise covariance matrix $R_{i}^{1 / 2}$.
13: $\quad \mathrm{S}(\mathrm{LDS}, \mathrm{N})$ - REAL (KIND=nag_wp) array
Input/Output
On entry: the lower triangular Cholesky factor of the state covariance matrix, S_{i}.
On exit: the lower triangular Cholesky factor of the state covariance matrix, S_{i+1}.
14: $\quad \mathrm{K}(\mathrm{LDS}, \mathrm{M})$ - REAL (KIND=nag_wp) array
Output
On exit: the Kalman gain matrix, K_{i}, premultiplied by the state transition matrix, $A_{i}, A_{i} K_{i}$.
15: $\quad \mathrm{H}(\mathrm{LDM}, \mathrm{M})-\mathrm{REAL}\left(\mathrm{KIND}=\right.$ nag_wp $\left.^{2}\right)$ array
Output
On exit: the lower triangular matrix $H_{i}^{1 / 2}$.
16: \quad TOL - REAL (KIND=nag_wp)
Input
On entry: the tolerance used to test for the singularity of $H_{i}^{1 / 2}$. If $0.0 \leq \mathrm{TOL}<m^{2} \times$ machine precision, then $m^{2} \times$ machine precision is used instead. The inverse of the condition number of $H^{1 / 2}$ is estimated by a call to F07TGF (DTRCON). If this estimate is less than TOL then $H^{1 / 2}$ is assumed to be singular.
Suggested value: TOL $=0.0$.
Constraint: $\mathrm{TOL} \geq 0.0$.

```
17: IWK(M) - INTEGER array Workspace
18: WK((N + M ) > (N + M + L)) - REAL (KIND=nag_wp) array Workspace
19: IFAIL - INTEGER
Input/Output
```

On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL $=1$
On entry, $\mathrm{N}<1$,
or $\quad \mathrm{M}<1$,
or $\quad \mathrm{L}<1$,
or \quad LDS $<\mathrm{N}$,
or $\quad \mathrm{LDM}<\mathrm{M}$,
or $\quad \mathrm{STQ}=$. TRUE. and $\mathrm{LDQ}<1$,
or $\quad \mathrm{STQ}=$. FALSE. and $\mathrm{LDQ}<\mathrm{L}$,
or $\quad \mathrm{TOL}<0.0$.

IFAIL $=2$
The matrix $H_{i}^{1 / 2}$ is singular.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The use of the square root algorithm improves the stability of the computations as compared with the direct coding of the Kalman filter. The accuracy will depend on the model.

8 Parallelism and Performance

G13EAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

G13EAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

For models with time-invariant A, B and C, G13EBF can be used.
The estimate of the state vector $\hat{X}_{i+1 \mid i}$ can be computed from $\hat{X}_{i \mid i-1}$ by

$$
\hat{X}_{i+1 \mid i}=A_{i} \hat{X}_{i \mid i-1}+A K_{i} r_{i}
$$

where

$$
r_{i}=Y_{i}-C_{i} \hat{X}_{i \mid i-1}
$$

are the independent one step prediction residuals. The required matrix-vector multiplications can be performed by F06PAF (DGEMV).

If W_{i} and V_{i} are independent multivariate Normal variates then the log-likelihood for observations $i=1,2, \ldots, t$ is given by

$$
l(\theta)=\kappa-\frac{1}{2} \sum_{i=1}^{t} \ln \left(\operatorname{det}\left(H_{i}\right)\right)-\frac{1}{2} \sum_{i=1}^{t}\left(Y_{i}-C_{i} X_{i \mid i-1}\right)^{\mathrm{T}} H_{i}^{-1}\left(Y_{i}-C_{i} X_{i \mid i-1}\right)
$$

where κ is a constant.
The Cholesky factors of the covariance matrices can be computed using F07FDF (DPOTRF).
Note that the model

$$
\begin{array}{ll}
X_{i+1}=A_{i} X_{i}+W_{i}, & \operatorname{Var}\left(W_{i}\right)=Q_{i} \\
Y_{i}=C_{i} X_{i}+V_{i}, & \operatorname{Var}\left(V_{i}\right)=R_{i}
\end{array}
$$

can be specified either with B set to the identity matrix and STQ =. FALSE. and the matrix $Q^{1 / 2}$ input in Q or with $\mathrm{STQ}=$.TRUE. and B set to $Q^{1 / 2}$.
The algorithm requires $\frac{7}{6} n^{3}+n^{2}\left(\frac{5}{2} m+l\right)+n\left(\frac{1}{2} l^{2}+m^{2}\right)$ operations and is backward stable (see Verhaegen and van Dooren (1986)).

10 Example

This example first inputs the number of updates to be computed and the problem sizes. The initial state vector and state covariance matrix are input followed by the model matrices $A_{i}, B_{i}, C_{i}, R_{i}$ and optionally Q_{i}. The Cholesky factors of the covariance matrices can be computed if required. The model matrices can be input at each update or only once at the first step. At each update the observed values are input and the residuals are computed and printed and the estimate of the state vector, $\hat{X}_{i \mid i-1}$, and the deviance are updated. The deviance is $-2 \times \log$-likelihood ignoring the constant. After the final update the state covariance matrix is computed from S and printed along with final estimate of the state vector and the value of the deviance.

The data is for a two-dimensional time series to which a $\operatorname{VARMA}(1,1)$ has been fitted. For the specification of a VARMA model as a state space model see the G13 Chapter Introduction. The initial value of P, P_{0}, is the solution to

$$
P_{0}=A_{1} P_{0} A_{1}^{\mathrm{T}}+B_{1} Q_{1} B_{1}^{\mathrm{T}}
$$

For convenience, the mean of each series is input before the first update and subtracted from the observations before the measurement update is computed.

10.1 Program Text

Program gl3eafe
G13EAF Example Program Text
Mark 26 Release. NAG Copyright 2016.
.. Use Statements ..
Use nag_library, Only: daxpy, ddot, dgemv, dpotrf, dtrmv, dtrsv, g13eaf, \&
nag_wp, x04caf
.. Implicit None Statement ..
Implicit None
.. Parameters ..
Real (Kind=nag_wp), Parameter : : one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter : : zero = 0.0_nag_wp
Integer, Parameter : incl $=1$, nin $=5$, nout $=6$
! .. Local Scalars ..
Real (Kind=nag_wp) : : dev, tol
Integer : : i, ifail, info, istep, l, ldm, ldq, \& lds, lwk, m, n, ncall, tdq
Logical : : full, is_const, read_matrix, stq
.. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : a(:,:), ax(:), b(:,:), c(:,:), \& h(:,:) , k(:,:) , p(:,:), q(:,:),
ymean(:)

Integer, Allocatable : : iwk(:)
.. Intrinsic Procedures ..
Intrinsic : : log
.. Executable Statements ..
Write (nout,*) 'G13EAF Example Program Results'
Write (nout,*)
Skip heading in data file
Read (nin,*)
Read in the problem size
Read (nin,*) $n, m, l, s t q, i s _c o n s t$
lds = n
If (.Not. stq) Then
ldq $=1$

$$
\mathrm{tdq}=1
$$

Else
ldq $=1$
tdq $=1$
End If
$l d m=m$
lwk $=(n+m) *(n+m+l)$
Allocate $(a(l d s, n), b(l d s, l), q(l d q, t d q), c(l d m, n), r(l d m, m), s(l d s, n)$, $k(l d s, m), h(l d m, m), i w k(m), w k(l w k), x(n), y m e a n(m), y(m), a x(n), p(l d s, n))$
! Read in the state covariance matrix, S
Read (nin,*) (s(i,1:n),i=1,n)
Read in flag indicating whether S is the full matrix, or its
Cholesky decomposition
Read (nin,*) full
! If required (full), perform the Cholesky decomposition on S
If (full) Then
! The NAG name equivalent of dpotrf is f07fdf

```
    Call dpotrf('L',n,s,lds,info)
    If (info>0) Then
        Write (nout,*) ' S not positive definite'
        Go To 100
    End If
End If
! Read in initial state vector
Read (nin,*) x(1:n)
Read in mean of the series
Read (nin,*) ymean(1:m)
Read in control parameter
Read (nin,*) ncall, tol
! Display titles
    Write (nout,*) , Residuals'
    Write (nout,*)
! Initialize variables
    dev = zero
    read_matrix = .True.
    Loop through data
    Do istep = 1, ncall
        Read in the various matrices. If the series is constant
        then this only happens at the first call
        If (read_matrix) Then
            Read in transition matrix, A
            Read (nin,*)(a(i,1:n),i=1,n)
            Read in noise coefficient matrix, B
            Read (nin,*)(b(i,1:l),i=1,n)
            Read in measurement coefficient matrix, C
            Read (nin,*)(c(i,1:n),i=1,m)
            Read in measurement noise covariance matrix, R
            Read (nin,*)(r(i,1:m),i=1,m)
            Read in flag indicating whether R is the full matrix, or its
            Cholesky decomposition
            Read (nin,*) full
            If required (full), perform the Cholesky decomposition on R
            If (full) Then
            The NAG name equivalent of dpotrf is fO7fdf
            Call dpotrf('L',m,r,ldm,info)
            If (info>0) Then
                    Write (nout,*) ' R not positive definite'
                    Go To 100
            End If
        End If
    Read in state noise matrix Q, if not assume to be identity matrix
        If (.Not. stq) Then
            Read (nin,*)(q(i,1:l),i=1,l)
            Read in flag indicating whether Q is the full matrix, or its
            Cholesky decomposition
            Read (nin,*) full
            Perform Cholesky factorization on Q, if full matrix is supplied
            If (full) Then
                    The NAG name equivalent of dpotrf is fO7fdf
                Call dpotrf('L',l,q,ldq,info)
                If (info>0) Then
                    Write (nout,*) ' Q not positive definite'
                    Go To 100
                    End If
            End If
        End If
        If series is constant set flag to false
        read_matrix = .Not. is_const
```

```
    End If
    Read in observed values
    Read (nin,*) y(1:m)
    Call G13EAF
    ifail = 0
    Call g13eaf(n,m,l,a,lds,b,stq,q,ldq,c,ldm,r,s,k,h,tol,iwk,wk,ifail)
    Subtract the mean y:= y-ymean
    The NAG name equivalent of daxpy is f06ecf
    Call daxpy(m,-one,ymean,incl,y,inc1)
    Perform time and measurement update x <= Ax + K(y-Cx)
    The NAG name equivalent of dgemv is f06paf
    Call dgemv('N',m,n,-one,c,ldm,x,inc1,one,y,1)
    Call dgemv('N',n,n,one,a,lds,x,incl,zero,ax,1)
    Call dgemv('N',n,m,one,k,lds,y,incl,one,ax,1)
    x(1:n) = ax(1:n)
    Display the residuals
    Write (nout,99999) y(1:m)
    Update log-likelihood.
    The NAG name equivalent of dtrsv is f06pjf
    Call dtrsv('L','N','N',m,h,ldm,y,1)
    The NAG name equivalent of ddot is f06eaf
    dev = dev + ddot(m,y,1,y,1)
    Do i = 1, m
    dev = dev + 2.0_nag_wp*log(h(i,i))
    End Do
    End Do
    Compute P from S
    The NAG name equivalent of dtrmv is f06pff
    Do i = 1, n
    p(1:i,i) = s(i,1:i)
    Call dtrmv('L','N','N',i,s,lds,p(1,i),incl)
    p(i,1:i-1) = p(1:i-1,i)
    End Do
    Display final results
    Write (nout,*)
    Write (nout,*) ' Final X(I+1:I) '
    Write (nout,*)
    Write (nout,99999) x(1:n)
    Write (nout,*)
    Flush (nout)
    ifail = 0
    Call x04caf('Lower','Non-Diag',n,n,p,lds,'Final Value of P',ifail)
    Write (nout,*)
    Write (nout,99998) ' Deviance = ', dev
    Continue
99999 Format (6F12.4)
99998 Format (A,E13.4)
    End Program gl3eafe
```


10.2 Program Data

G13EAF Example Program Data

422 F	T			: : N,M,L,STQ,IS_CONST
8.2068	2.0599	1.4807	0.3627	
2.0599	7.9645	0.9703	0.2136	
1.4807	0.9703	0.9253	0.2236	
0.3627	0.2136	0.2236	0.0542	: : End of S
T				: : FULL flag for S
0.000	0.000	0.0000	. 000	: : X
4.404	7.991			: : YMEAN

480.0				: : NCALL,TOL
0.607	-0.033	1.000	0.000	
0.000	0.543	0.000	1.000	
0.000	0.000	0.000	0.000	
0.000	0.000	0.000	0.000	: : End of A
1.000	0.000			
0.000	1.000			
0.543	0.125			
0.134	0.026			: : End of B
1.000	0.000	0.000	0.000	
0.000	1.000	0.000	0.000	: : End of C
0.000	0.000			
0.000	0.000			: : End of R
F				: FULL flag for R
2.598	0.560			
0.560	5.330			: : End of 2
T				: : FULL flag for Q
-1.490 7.340				
-1.620	6.350			
5.2006 .960				
6.2308 .540				
6.2106 .620				
5.860	4.970			
4.090	4.550			
3.180	4.810			
2.620	4.750			
1.490	4.760			
1.17010 .880				
0.85010 .010				
-0.350 11.620				
0.24010 .360				
2.440	6.400			
2.580	6.240			
2.040	7.930			
0.400	4.040			
2.260	3.730			
3.340	5.600			
5.090	5.350			
5.000	6.810			
4.780	8.270			
4.110	7.680			
3.450	6.650			
1.650	6.080			
1.29010 .250				
$4.090 \quad 9.140$				
6.32017 .750				
7.50013 .300				
$3.890 \quad 9.630$				
1.580	6.800			
5.210	4.080			
5.250	5.060			
4.930	4.940			
7.380	6.650			
5.870	7.940			
5.81010 .760				
9.68011 .890				
$9.070 \quad 5.850$				
7.2909 .010				
$7.840 \quad 7.500$				
7.55010 .020				
7.32010 .380				
7.9708 .150				
7.7608 .370				
7.00010 .730				
8.350	12.140			: End of Y

10.3 Program Results

G13EAF Example Program Results
Residuals

-5.8940	-0.6510
-1.4710	-1.0407

5.1658
$-1.3280 \quad 0.4580$
$1.3652-1.5066$
$-0.2337 \quad-2.4192$
$-0.8685 \quad-1.7065$
$-0.4624 \quad-1.1519$
$-0.7510 \quad-1.4218$
$-1.3526 \quad-1.3335$
$-0.6707 \quad 4.8593$
$-1.7389 \quad 0.4138$
$-1.6376 \quad 2.7549$
$-0.6137 \quad 0.5463$
0.9067 -2.8093
$-0.8255-0.9355$
$-0.7494 \quad 1.0247$
$-2.2922-3.8441$
$1.8812-1.7085$
$-0.7112 \quad-0.2849$
$1.6747-1.2400$
$-0.6619 \quad 0.0609$
$0.3271 \quad 1.0074$
$\begin{array}{ll}-0.8165 & -0.5325 \\ -0.2759 & -1.0489\end{array}$

-1.9383	-1.1186
-0.3131	3.5855

$1.3726-0.1289$
$1.4153 \quad 8.9545$
$0.3672-0.4126$
$-2.3659 \quad-1.2823$
$\begin{array}{rr}-1.0130 & -1.7306 \\ 3.2472 & -3.0836\end{array}$
$\begin{array}{rr}-1.1501 & -1.1623 \\ 0.6855 & -1.2751\end{array}$
$2.3432 \quad 0.2570$
$-1.6892 \quad 0.3565$
$\begin{array}{ll}1.3871 & 3.0138 \\ 3.3840 & 2.1312\end{array}$
$-0.5118 \quad-4.7670$
$0.8569 \quad 2.3741$
$0.9558 \quad-1.2209$
$0.6778 \quad 2.1993$
$0.4304 \quad 1.1393$
$1.4987-1.2255$
$0.5361 \quad 0.1237$
$0.2649 \quad 2.4582$
$2.0095 \quad 2.5623$
Final $X(I+1: I)$

$$
3.6698 \quad 2.5888
$$

0.0000
0.0000

Final Value of P
1
2
3
4
$1 \quad 2.5980$
$2 \quad 0.5600 \quad 5.3300$
$3 \quad 1.4807 \quad 0.9703$
0.9253
$\begin{array}{llll}0.3627 & 0.2136 & 0.2236 & 0.0542\end{array}$
Deviance $=0.2229 \mathrm{E}+03$

