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1 Scope of the Chapter

This chapter provides routines for solving various mathematical optimization problems by solvers based
on local stopping criteria. The main classes of problems covered in this chapter are:

Linear Programming (LP) – dense and sparse;

Quadratic Programming (QP) – convex and nonconvex, dense and sparse;

Nonlinear Programming (NLP) – dense and sparse, based on active-set SQP methods or
interior point methods (IPM);

Semidefinite Programming (SDP) – both linear matrix inequalities (LMI) and bilinear matrix
inequalities (BMI);

Derivative-free Optimization (DFO);

Least Squares (LSQ), data fitting – linear and nonlinear, constrained and unconstrained.

For a full overview of the functionality offered in this chapter, see Section 5 or the Chapter Contents
(Chapter E04).

See also other chapters in the Library relevant to optimization:

Chapter E05 contains routines to solve global optimization problems;

Chapter H addresses problems arising in operational research and focuses on Mixed Integer
Programming (MIP);

Chapters F07 and F08 include routines for linear algebra and in particular unconstrained linear
least squares;

Chapter E02 focuses on curve and surface fitting, in which linear data fitting in l1 or l1 norm
might be of interest.

This introduction is only a brief guide to the subject of optimization. It discusses a classification of the
optimization problems and presents an overview of the algorithms and their stopping criteria to help
with the choice of a correct solver for a particular problem. Anyone with a difficult or protracted
problem to solve will find it beneficial to consult a more detailed text, see Gill et al. (1981), Fletcher
(1987) or Nocedal and Wright (2006). If you are unfamiliar with the mathematics of the subject you
may find Sections 2.1, 2.2, 2.3, 2.6 and 3 a useful starting point.

2 Background to the Problems

2.1 Introduction to Mathematical Optimization

Mathematical Optimization, also known as Mathematical Programming, refers to the problem of finding
values of the inputs from a given set so that a function (called the objective function) is minimized or
maximized. The inputs are called decision variables, primal variables or just variables. The given set
from which the decision variables are selected is referred to as a feasible set and might be defined as a
domain where constraints expressed as functions of the decision variables hold certain values. Each
point of the feasible set is called a feasible point.

A general mathematical formulation of such a problem might be written as

minimize f xð Þ
subject to x 2 F

where x denotes the decision variables, f xð Þ the objective function and F the feasibility set. In this
chapter we assume that F � Rn. Since maximization of the objective function f xð Þ is equivalent to
minimizing �f xð Þ, only minimization is considered further in the text. Some routines allow you to
specify whether you are solving a minimization or maximization problem, carrying out the required
transformation of the objective function in the latter case.

A point x� is said to be a local minimum of a function f if it is feasible (x� 2 F ) and if f xð Þ � f x�ð Þ
for all x 2 F near x�. A point x� is a global minimum if it is a local minimum and f xð Þ � f x�ð Þ for
all feasible x. The solvers in this chapter are based on algorithms which seek only a local minimum,
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however, many problems (such as convex optimization problems) have only one local minimum. This is
also the global minimum. In such cases the Chapter E04 solvers find the global minimum. See Chapter
E05 for solvers which try to find a global solution even for nonconvex functions.

2.2 Classification of Optimization Problems

There is no single efficient solver for all optimization problems. Therefore it is important to choose a
solver which matches the problem and any specific needs as closely as possible. A more generic solver
might be applied, however the performance suffers in some cases, depending on the underlying
algorithm.

There are various criteria to help to classify optimization problems into particular categories. The main
criteria are as follows:

Type of objective function;

Type of constraints;

Size of the problem;

Smoothness of the data and available derivative information.

Each of the criteria is discussed below to give the necessary information to identify the class of the
optimization problem. Section 2.5 presents the basic properties of the algorithms and Section 3 advises
on the choice of particular routines in the chapter.

2.2.1 Types of objective functions

In general, if there is a structure in the problem the solver should benefit from it. For example, a solver
for problems with the sum of squares objective should work better than when this objective is treated as
a general nonlinear objective. Therefore it is important to recognize typical types of the objective
functions.

An optimization problem which has no objective is equivalent to having a constant objective, i.e.,
f xð Þ ¼ 0. It is usually called a feasible point problem. The task is to then find any point which
satisfies the constraints.

A linear objective function is a function which is linear in all variables and therefore can be
represented as

f xð Þ ¼ cTxþ c0

where c 2 Rn. Scalar c0 has no influence on the choice of decision variables x and is usually omitted. It
will not be used further in this text.

A quadratic objective function is an extension of a linear function with quadratic terms as follows:

f xð Þ ¼ 1

2
xTHxþ cTx:

Here H is a real symmetric n� n matrix. In addition, if H is positive semidefinite (all its eigenvalues
are non-negative), the objective is convex.

A general nonlinear objective function is any f : Rn ! R without a special structure.

Special consideration is given to the objective function in the form of a sum of squares of functions,
such as

f xð Þ ¼
Xm
i¼1

r2i xð Þ

where ri : R
n ! R; often called residual functions. This form of the objective plays a key role in data

fitting solved as a least squares problem as shown in Section 2.2.3.
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2.2.2 Types of constraints

Not all optimization problems have to have constraints. If there are no restrictions on the choice of x
except that x 2 F ¼ Rn, the problem is called unconstrained and thus every point is a feasible point.

Simple bounds on decision variables x 2 Rn (also known as box constraints or bound constraints)
restrict the value of the variables, e.g., x5 � 10. They might be written in a general form as

lxi � xi � uxi ; for i ¼ 1; . . . ; n

or in the vector notation as

lx � x � ux

where lx and ux are n-dimensional vectors. Note that lower and upper bounds are specified for all the
variables. By conceptually allowing lxi ¼ �1 and uxi ¼ þ1 or lxi ¼ uxi full generality in various
types of constraints is allowed, such as unconstrained variables, one-sided inequalities, ranges or
equalities (fixing the variable).

The same format of bounds is adopted to linear and nonlinear constraints in the whole chapter. Note
that for the purpose of passing infinite bounds to the routines, all values above a certain threshold
(typically 1020) are treated as þ1.

Linear constraints are defined as constraint functions that are linear in all of their variables, e.g.,
3x1 þ 2x2 � 4. They can be stated in a matrix form as

lB � Bx � uB

where B is a general mB � n rectangular matrix and lB and uB are mB-dimensional vectors. Each row
of B represents linear coefficients of one linear constraint. The same rules for bounds apply as in the
simple bounds case.

Although the bounds on xi could be included in the definition of linear constraints, we recommend you
distinguish between them for reasons of computational efficiency as most of the solvers treat simple
bounds explicitly.

A set of mg nonlinear constraints may be defined in terms of a nonlinear function g : Rn ! Rmg and
the bounds lg and ug which follow the same format as simple bounds and linear constraints:

lg � g xð Þ � ug:

Although the linear constraints could be included in the definition of nonlinear constraints, again we
prefer to distinguish between them for reasons of computational efficiency.

A matrix constraint (or matrix inequality) is a constraint on eigenvalues of a matrix operator. More
precisely, let Sm denote the space of real symmetric matrices m by m and let A be a matrix operator
A : Rn ! Sm, i.e., it assigns a symmetric matrix A xð Þ for each x. The matrix constraint can be
expressed as

A xð Þ � 0

where the inequality S � 0 for S 2 Sm is meant in the eigenvalue sense, namely all eigenvalues of the
matrix S should be non-negative (the matrix should be positive semidefinite).

There are two types of matrix constraints allowed in the current mark of the Library. The first is linear
matrix inequality (LMI) formulated as

A xð Þ ¼
Xn
i¼1

xiAi �A0 � 0

and the second one, bilinear matrix inequality (BMI), stated as

A xð Þ ¼
Xn
i;j¼1

xixjQij þ
Xn
i¼1

xiAi �A0 � 0:

Here all matrices Ai, Qij are given real symmetric matrices of the same dimension. Note that the latter
type is in fact quadratic in x, nevertheless, it is referred to as bilinear for historical reasons.
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2.2.3 Typical classes of optimization problems

Specific combinations of the types of the objective functions and constraints give rise to various classes
of optimization problems. The common ones are presented below. It is always advisable to consider the
closest formulation which covers your problem when choosing the solver. For more information see
classical texts such as Dantzig (1963), Gill et al. (1981), Fletcher (1987), Nocedal and Wright (2006) or
Chvátal (1983).

A Linear Programming (LP) problem is a problem with a linear objective function, linear constraints
and simple bounds. It can be written as follows:

minimize
x2Rn

cTx

subject to lB � Bx � uB

lx � x � ux

Quadratic Programming (QP) problems optimize a quadratic objective function over a set given by
linear constraints and simple bounds. Depending on the convexity of the objective function, we can
distinguish between convex and nonconvex (or general) QP.

minimize
x2Rn

1
2x

THxþ cTx

subject to lB � Bx � uB

lx � x � ux

Nonlinear Programming (NLP) problems allow a general nonlinear objective function f xð Þ and any of
the nonlinear, linear or bound constraints. Special cases when some (or all) of the constraints are
missing are termed as unconstrained, bound-constrained or linearly-constrained nonlinear program-
ming and might have a specific solver as some algorithms take special provision for each of the
constraint type. Problems with a linear or quadratic objective and nonlinear constraints should be still
solved as general NLPs.

minimize
x2Rn

f xð Þ
subject to lg � g xð Þ � ug

lB � Bx � uB

lx � x � ux

Semidefinite Programming (SDP) typically refers to linear semidefinite programming thus a problem
with a linear objective function, linear constraints and linear matrix inequalities:

minimize
x2Rn

cTx

subject to
Xn
i¼1

xiA
k
i �Ak

0 � 0; k ¼ 1; . . . ;mA

lB � Bx � uB

lx � x � ux

This problem can be extended with a quadratic objective and bilinear (in fact quadratic) matrix
inequalities. We refer to it as a semidefinite programming problem with bilinear matrix inequalities
(BMI-SDP):

minimize
x2Rn

1
2x

THxþ cTx

subject to
Xn
i;j¼1

xixjQ
k
ij þ

Xn
i¼1

xiA
k
i �Ak

0 � 0; k ¼ 1; . . . ;mA

lB � Bx � uB

lx � x � ux

A least squares (LSQ) problem is a problem where the objective function in the form of sum of
squares is minimized subject to usual constraints. If the residual functions ri xð Þ are linear or nonlinear,
the problem is known as linear or nonlinear least squares, respectively. Not all types of the
constraints need to be present which brings up special cases of unconstrained, bound-constrained or
linearly-constrained least squares problems as in NLP .
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minimize
x2Rn

Xm
i¼1

r2i xð Þ
subject to lg � g xð Þ � ug

lB � Bx � uB

lx � x � ux

This form of the problem is very common in data fitting as demonstrated on the following example.
Let us consider a process that is observed at times ti and measured with results yi, for i ¼ 1; 2; . . . ;m.
Furthermore, the process is assumed to behave according to a model � t; xð Þ where x are parameters of
the model. Given the fact that the measurements might be inaccurate and the process might not exactly
follow the model, it is beneficial to find model parameters x so that the error of the fit of the model to
the measurements is minimized. This can be formulated as an optimization problem in which x are
decision variables and the objective function is the sum of squared errors of the fit at each individual
measurement, thus:

minimize
x2Rn

Xm
i¼1

r2i xð Þ where ri xð Þ ¼ � ti; xð Þ � yi

2.2.4 Problem size, dense and sparse problems

The size of the optimization problem plays an important role in the choice of the solver. The size is
usually understood to be the number of variables n and the number (and the type) of the constraints.
Depending on the size of the problem we talk about small-scale, medium-scale or large-scale problems.

It is often more practical to look at the data and its structure rather than just the size of the problem.
Typically in a large-scale problem not all variables interact with everything else. It is natural that only a
small portion of the constraints (if any) involves all variables and the majority of the constraints
depends only on small different subsets of the variables. This creates many explicit zeros in the data
representation which it is beneficial to capture and pass to the solver. In such a case the problem is
referred to as sparse. The data representation usually has the form of a sparse matrix which defines the
linear constraint matrix B, Jacobian matrix of the nonlinear constraints gi or the Hessian of the
objective H. Common sparse matrix formats are used, such as coordinate storage (CS) and compressed
column storage (CCS) (see Section 2.1 in the F11 Chapter Introduction).

The counterpart to a sparse problem is a dense problem in which the matrices are stored in general full
format and no structure is assumed or exploited. Whereas passing a dense problem to a sparse solver
presents typically only a small overhead, calling a dense solver on a large-scale sparse problem is ill-
advised; it leads to a significant performance degradation and memory overuse.

2.2.5 Derivative information, smoothness, noise and derivative-free optimization (DFO)

Most of the classical optimization algorithms rely heavily on derivative information. It plays a key role
in necessary and sufficient conditions (see Section 2.4) and in the computation of the search direction at
each iteration (see Section 2.5). Therefore it is important that accurate derivatives of the nonlinear
objective and nonlinear constraints are provided whenever possible.

Unless stated otherwise, it is assumed that the nonlinear functions are sufficiently smooth. The solvers
will usually solve optimization problems even if there are isolated discontinuities away from the
solution, however you should always consider whether an alternative smooth representation of the
problem exists. A typical example is an absolute value xij j which does not have a first derivative for
xi ¼ 0. Nevertheless, if the model allows it can be transformed as

xi ¼ xþ
i � x�

i ; xij j ¼ xþ
i þ x�

i ; where xþ
i ; x

�
i � 0

which avoids the discontinuity of the first derivative. If many discontinuities are present, alternative
methods need to be applied such as e04cbf or stochastic algorithms in Chapter E05, e05saf or e05sbf.

The vector of first partial derivatives of a function is called the gradient vector, i.e.,

rf xð Þ ¼ @f xð Þ
@x1

;
@f xð Þ
@x2

; . . . ;
@f xð Þ
@xn

� �T
;
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the matrix of second partial derivatives is termed the Hessian matrix, i.e.,

r2f xð Þ ¼ @2f xð Þ
@xi@xj

� �
i;j¼1;...;n

and the matrix of first partial derivatives of the vector-valued function f : Rn ! Rm is known as the
Jacobian matrix:

J xð Þ ¼ @fi xð Þ
@xj

� �
i¼1;...;m;j¼1;...;n

:

If the function is smooth and the derivative is unavailable, it is possible to approximate it by finite
differences, a change in function values in response to small perturbations of the variables. Many
routines in the Library estimate missing elements of the gradients automatically this way. The choice of
the size of the perturbations strongly affects the quality of the approximation. Too small perturbations
might spoil the approximation due to the cancellation errors in floating-point arithmetic and too big
reduce the match of the finite differences and the derivative (see e04xaf/e04xaa for optimal balance of
the factors). In addition, finite differences are very sensitive to the accuracy of f xð Þ. They might be
unreliable or fail completely if the function evaluation is inaccurate or noisy such as when f xð Þ is a
result of a stochastic simulation or an approximate solution of a PDE.

Derivative-free optimization (DFO) represents an alternative to derivative-based optimization
algorithms. DFO solvers neither rely on derivative information nor approximate it by finite differences.
They sample function evaluations across the domain to determine a new iteration point (for example, by
a quadratic model through the sampled points). They are therefore less exposed to the relative error of
the noise of the function because the sample points are never too close to each other to take the error
into account. DFO might be useful even if the finite differences can be computed as the number of
function evaluations is lower. This is particularly beneficial for problems where the evaluations of f are
expensive. DFO solvers tend to exhibit a faster initial progress to the solution, however, they typically
cannot achieve high-accurate solutions.

2.2.6 Minimization subject to bounds on the objective function

In all of the above problem categories it is assumed that

a � f xð Þ � b

where a ¼ �1 and b ¼ þ1. Problems in which a and/or b are finite can be solved by adding an extra
constraint of the appropriate type (i.e., linear or nonlinear) depending on the form of f xð Þ. Further
advice is given in Section 3.7.

2.2.7 Multi-objective optimization

Sometimes a problem may have two or more objective functions which are to be optimized at the same
time. Such problems are called multi-objective, multi-criteria or multi-attribute optimization. If the
constraints are linear and the objectives are all linear then the terminology goal programming is also
used.

Although there is no routine dealing with this type of problems explicitly in this mark of the Library,
techniques used in this chapter and in Chapter E05 may be employed to address such problems, see
Section 2.5.5.

2.3 Geometric Representation

To illustrate the nature of optimization problems it is useful to consider the following example:

f xð Þ ¼ ex1 4x2
1 þ 2x22 þ 4x1x2 þ 2x2 þ 1

� �
:

(This function is used as the example function in the documentation for the unconstrained routines.)
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Figure 1

Figure 1 is a contour diagram of f xð Þ. The contours labelled F0; F1; . . . ; F4 are isovalue contours, or

lines along which the function f xð Þ takes specific constant values. The point x� ¼ 1
2;�1
� �T

is a local
unconstrained minimum, that is, the value of f x�ð Þ ( ¼ 0) is less than at all the neighbouring points.
A function may have several such minima. The point xs is said to be a saddle point because it is a
minimum along the line AB, but a maximum along CD.

If we add the constraint x1 � 0 (a simple bound) to the problem of minimizing f xð Þ, the solution
remains unaltered. In Figure 1 this constraint is represented by the straight line passing through x1 ¼ 0,
and the shading on the line indicates the unacceptable region (i.e., x1 < 0).

If we add the nonlinear constraint g1 xð Þ : x1 þ x2 � x1x2 � 3
2 � 0 , represented by the curved shaded line

in Figure 1, then x� is not a feasible point because g1 x�ð Þ < 0. The solution of the new constrained
problem is xb ’ 1:1825;�1:7397ð ÞT, the feasible point with the smallest function value (where
f xbð Þ ’ 3:0607).

2.4 Sufficient Conditions for a Solution

All nonlinear functions will be assumed to have continuous second derivatives in the neighbourhood of
the solution.

2.4.1 Unconstrained minimization

The following conditions are sufficient for the point x� to be an unconstrained local minimum of f xð Þ:
(i) rf x�ð Þk k ¼ 0 and

(ii) r2f x�ð Þ is positive definite,

where 	k k denotes the Euclidean norm.
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2.4.2 Minimization subject to bounds on the variables

At the solution of a bounds-constrained problem, variables which are not on their bounds are termed
free variables. If it is known in advance which variables are on their bounds at the solution, the
problem can be solved as an unconstrained problem in just the free variables; thus, the sufficient
conditions for a solution are similar to those for the unconstrained case, applied only to the free
variables.

Sufficient conditions for a feasible point x� to be the solution of a bounds-constrained problem are as
follows:

(i) �g x�ð Þk k ¼ 0; and

(ii) �G x�ð Þ is positive definite; and

(iii)
@

@xj
f x�ð Þ < 0; xj ¼ uj ;

@

@xj
f x�ð Þ > 0; xj ¼ lj ,

where �g xð Þ is the gradient of f xð Þ with respect to the free variables, and �G xð Þ is the Hessian matrix of
f xð Þ with respect to the free variables. The extra condition (iii) ensures that f xð Þ cannot be reduced by
moving off one or more of the bounds.

2.4.3 Linearly-constrained minimization

For the sake of simplicity, the following description does not include a specific treatment of bounds or
range constraints, since the results for general linear inequality constraints can be applied directly to
these cases.

At a solution x�, of a linearly-constrained problem, the constraints which hold as equalities are called
the active or binding constraints. Assume that there are t active constraints at the solution x�, and let Â
denote the matrix whose columns are the columns of A corresponding to the active constraints, with b̂
the vector similarly obtained from b; then

ÂTx� ¼ b̂:

The matrix Z is defined as an n� n� tð Þ matrix satisfying:

ÂTZ ¼ 0;
ZTZ ¼ I:

The columns of Z form an orthogonal basis for the set of vectors orthogonal to the columns of Â.

Define

gZ xð Þ ¼ ZTrf xð Þ, the projected gradient vector of f xð Þ;
GZ xð Þ ¼ ZTr2f xð ÞZ, the projected Hessian matrix of f xð Þ.

At the solution of a linearly-constrained problem, the projected gradient vector must be zero, which
implies that the gradient vector rf x�ð Þ can be written as a linear combination of the columns of Â, i.e.,

rf x�ð Þ ¼
Xt
i¼1

��
i âi ¼ Â��. The scalar ��

i is defined as the Lagrange multiplier corresponding to the ith

active constraint. A simple interpretation of the ith Lagrange multiplier is that it gives the gradient of
f xð Þ along the ith active constraint normal; a convenient definition of the Lagrange multiplier vector
(although not a recommended method for computation) is:

�� ¼ ÂTÂ
� ��1

ÂTrf x�ð Þ:

Sufficient conditions for x� to be the solution of a linearly-constrained problem are:

(i) x� is feasible, and ÂTx� ¼ b̂; and

(ii) gZ x�ð Þk k ¼ 0, or equivalently, rf x�ð Þ ¼ Â��; and

(iii) GZ x�ð Þ is positive definite; and
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(iv) ��
i > 0 if ��

i corresponds to a constraint âTi x
� � b̂i;

��
i < 0 if ��

i corresponds to a constraint âTi x
� � b̂i.

The sign of ��
i is immaterial for equality constraints, which by definition are always active.

2.4.4 Nonlinearly-constrained minimization

For nonlinearly-constrained problems, much of the terminology is defined exactly as in the linearly-
constrained case. To simplify the notation, let us assume that all nonlinear constraints are in the form
c xð Þ � 0. The set of active constraints at x again means the set of constraints that hold as equalities at
x, with corresponding definitions of ĉ and Â: the vector ĉ xð Þ contains the active constraint functions,
and the columns of Â xð Þ are the gradient vectors of the active constraints. As before, Z is defined in
terms of Â xð Þ as a matrix such that:

ÂTZ ¼ 0;
ZTZ ¼ I

where the dependence on x has been suppressed for compactness.

The projected gradient vector gZ xð Þ is the vector ZTrf xð Þ. At the solution x� of a nonlinearly-
constrained problem, the projected gradient must be zero, which implies the existence of Lagrange
multipliers corresponding to the active constraints, i.e., rf x�ð Þ ¼ Â x�ð Þ��.

The Lagrangian function is given by:

L x; �ð Þ ¼ f xð Þ � �Tĉ xð Þ:
We define gL xð Þ as the gradient of the Lagrangian function; GL xð Þ as its Hessian matrix, and ĜL xð Þ as
its projected Hessian matrix, i.e., ĜL ¼ ZTGLZ.

Sufficient conditions for x� to be the solution of a nonlinearly-constrained problem are:

(i) x� is feasible, and ĉ x�ð Þ ¼ 0; and

(ii) gZ x�ð Þk k ¼ 0, or, equivalently, rf x�ð Þ ¼ Â x�ð Þ��; and

(iii) ĜL x�ð Þ is positive definite; and

(iv) ��
i > 0 if ��

i corresponds to a constraint of the form ĉi � 0.

The sign of ��
i is immaterial for equality constraints, which by definition are always active.

Note that condition (ii) implies that the projected gradient of the Lagrangian function must also be zero
at x�, since the application of ZT annihilates the matrix Â x�ð Þ.

2.5 Background to Optimization Methods

All the algorithms contained in this chapter generate an iterative sequence x kð Þ� 	
that converges to the

solution x� in the limit, except for some special problem categories (i.e., linear and quadratic
programming). To terminate computation of the sequence, a convergence test is performed to determine
whether the current estimate of the solution is an adequate approximation. The convergence tests are
discussed in Section 2.7.

Most of the methods construct a sequence x kð Þ� 	
satisfying:

x kþ1ð Þ ¼ x kð Þ þ � kð Þp kð Þ;

where the vector p kð Þ is termed the direction of search, and � kð Þ is the steplength. The steplength � kð Þ

is chosen so that f x kþ1ð Þ� �
< f x kð Þ� �

and is computed using one of the techniques for one-dimensional
optimization referred to in Section 2.5.1.
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2.5.1 One-dimensional optimization

The Library contains two special routines for minimizing a function of a single variable. Both routines
are based on safeguarded polynomial approximation. One routine requires function evaluations only and
fits a quadratic polynomial whilst the other requires function and gradient evaluations and fits a cubic
polynomial. See Section 4.1 of Gill et al. (1981).

2.5.2 Methods for unconstrained optimization

The distinctions between methods arise primarily from the need to use varying levels of information
about derivatives of f xð Þ in defining the search direction. We describe three basic approaches to
unconstrained problems, which may be extended to other problem categories. Since a full description of
the methods would fill several volumes, the discussion here can do little more than allude to the
processes involved, and direct you to other sources for a full explanation.

(a) Newton-type Methods (Modified Newton Methods)

Newton-type methods use the Hessian matrix r2f x kð Þ� �
, or its finite difference approximation , to

define the search direction. The routines in the Library either require a subroutine that computes
the elements of the Hessian directly, or they approximate them by finite differences.

Newton-type methods are the most powerful methods available for general problems and will find
the minimum of a quadratic function in one iteration. See Sections 4.4 and 4.5.1 of Gill et al.
(1981).

(b) Quasi-Newton Methods

Quasi-Newton methods approximate the Hessian r2f x kð Þ� �
by a matrix B kð Þ which is modified at

each iteration to include information obtained about the curvature of f along the current search
direction p kð Þ. Although not as robust as Newton-type methods, quasi-Newton methods can be more
efficient because the Hessian is not computed directly, or approximated by finite differences. Quasi-
Newton methods minimize a quadratic function in n iterations, where n is the number of variables.
See Section 4.5.2 of Gill et al. (1981).

(c) Conjugate-gradient Methods

Unlike Newton-type and quasi-Newton methods, conjugate-gradient methods do not require the
storage of an n by n matrix and so are ideally suited to solve large problems. Conjugate-gradient
type methods are not usually as reliable or efficient as Newton-type, or quasi-Newton methods. See
Section 4.8.3 of Gill et al. (1981).

2.5.3 Methods for nonlinear least squares problems

These methods are similar to those for general nonlinear optimization, but exploit the special structure
of the Hessian matrix to give improved computational efficiency.

Since

f xð Þ ¼
Xm
i¼1

r2i xð Þ

the Hessian matrix is of the form

r2f xð Þ ¼ 2 J xð ÞTJ xð Þ þ
Xm
i¼1

ri xð Þr2ri xð Þ
 !

;

where J xð Þ is the Jacobian matrix of r xð Þ.
In the neighbourhood of the solution, r xð Þk k is often small compared to J xð ÞTJ xð Þ

 

 (for example,
when r xð Þ represents the goodness-of-fit of a nonlinear model to observed data). In such cases,
2J xð ÞTJ xð Þ may be an adequate approximation to r2f xð Þ, thereby avoiding the need to compute or
approximate second derivatives of ri xð Þf g. See Section 4.7 of Gill et al. (1981).
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2.5.4 Methods for handling constraints

There are two main approaches for handling constraints in optimization algorithms – the active-set
sequential quadratic programming method (or just SQP) and the interior point method (IPM). It is
important to understand their very distinct features as both algorithms complement each other. The
easiest method of comparison is to look at how the inequality constraints are treated and how the solver
approaches the optimal solution (the progress of the KKT optimality measures: optimality, feasibility,
complementarity).

Inequality constraints are the hard part of the optimization because of their ‘twofold nature’. If the
optimal solution strictly satisfies the inequality, i.e., the optimal point is in the interior of the constraint,
the inequality constraint does not influence the result and could be removed from the model. On the
other hand, if the inequality is satisfied as an equality (is active at the solution), the constraint must be
present and could be treated as an equality from the very beginning. This is expressed by the
complementarity in KKT conditions.

Solvers, based on the active-set method, solve at each iteration a quadratic approximation of the
original problem; they try to estimate which constraints need to be kept (are active) and which can be
ignored. A practical consequence is that the algorithm partly ‘walks along the boundary’ of the feasible
region given by the constraints. The iterates are thus feasible early on with regard to all linear
constraints (and a local linearization of the nonlinear constraints) which is preserved through the
iterations. The complementarity is satisfied by default, and once the active set is determined correctly
and optimality is within the tolerance, the solver finishes. The number of iterations might be high but
each is relatively cheap. See Chapter 6 of Gill et al. (1981) for further details.

In contrast, an interior point method generates iterations that avoid the boundary defined by the
inequality constraints. As the solver progresses the iterates are allowed to get closer and closer to the
boundary and converge to the optimal solution which might lie on the boundary. From the practical
point of view, IPM typically requires only tens of iterations. Each iteration consists of solving a large
linear system of equations taking into account all variables and constraints, so each iteration is fairly
expensive. All three optimality measures are reduced simultaneously.

In many cases it is difficult to predict which of the algorithms will behave better on a particular
problem, however, some initial guidance can be given in the following table:

IPM advantages SQP advantages

Can exploit second derivatives and its structure
Efficient on unconstrained or loosely constrained
problems
Efficient also for (both convex and nonconvex)
quadratic problems (QP)
Better use of multi-core architecture (SMP library
only)
New interface, easier to use

Stay feasible with regard to linear constraints
through most of the iterations
Very efficient for highly constrained problems
Better results on pathological problems in our
experience
Generally requires less function evaluations (effi-
cient for problems with expensive function
evaluations)
Requires first derivatives but can work only with
function values
Can capitalize on a good initial point
Allows warm starts (good for a sequence of
similar problems)
Infeasibility detection

Unless some of the specific features are required which are offered only by one algorithm, the initial
decision should be based on the availability of the derivatives of the problem and the number of
constraints (for example, expressed as a ratio between the numbers of variables and the sum of the
number of linear and nonlinear constraints). Readiness of exact second derivatives is a clear advantage
for IPM so unless the number of constraints is close to the number of variables, IPM will probably
work better. Similarly, if a large-scale problem has relatively few constraints (e.g., less than 40%) IPM
might be more successful, especially as the problem gets bigger. On the other hand, if no derivatives are
available, either the SQP or a specialized algorithm from the Library (see Derivative Free Optimization,
Section 2.2.5) needs to be used. With more and more constraints SQP might be faster. For problems
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which do not fall in either of the categories, it is not easy to anticipate which solver will work better
and some experimentation might be required.

2.5.5 Methods for handling multi-objective optimization

Suppose we have objective functions fi xð Þ, i > 1, all of which we need to minimize at the same time.
There are two main approaches to this problem:

(a) Combine the individual objectives into one composite objective. Typically this might be a weighted
sum of the objectives, e.g.,

w1f1 xð Þ þ w2f2 xð Þ þ 	 	 	 þ wnfn xð Þ

Here you choose the weights to express the relative importance of the corresponding objective.
Ideally each of the fi xð Þ should be of comparable size at a solution.

(b) Order the objectives in order of importance. Suppose fi are ordered such that fi xð Þ is more
important than fiþ1 xð Þ, for i ¼ 1; 2; . . . ; n� 1. Then in the lexicographical approach to multi-
objective optimization a sequence of subproblems are solved. Firstly solve the problem for
objective function f1 xð Þ and denote by r1 the value of this minimum. If i � 1ð Þ subproblems have
been solved with results ri�1 then subproblem i becomes min fi xð Þð Þ subject to rk � fk xð Þ � rk, for
k ¼ 1; 2; . . . ; i� 1 plus the other constraints.

Clearly the bounds on fk might be relaxed at your discretion.

In general, if NAG routines from the Chapter E04 are used then only local minima are found. This
means that a better solution to an individual objective might be found without worsening the optimal
solutions to the other objectives. Ideally you seek a Pareto solution; one in which an improvement in
one objective can only be achieved by a worsening of another objective.

To obtain a Pareto solution routines from Chapter E05 might be used or, alternatively, a pragmatic
attempt to derive a global minimum might be tried (see e05ucf). In this approach a variety of different
minima are computed for each subproblem by starting from a range of different starting points. The best
solution achieved is taken to be the global minimum. The more starting points chosen the greater
confidence you might have in the computed global minimum.

2.6 Scaling

Scaling (in a broadly defined sense) often has a significant influence on the performance of optimization
methods.

Since convergence tolerances and other criteria are necessarily based on an implicit definition of ‘small’
and ‘large’, problems with unusual or unbalanced scaling may cause difficulties for some algorithms.

Although there are currently no user-callable scaling routines in the Library, scaling can be performed
automatically in routines which solve sparse LP, QP or NLP problems and in some dense solver
routines. Such routines have an optional parameter ‘Scale Option’ which can be set by the user; see
individual routine documents for details.

The following sections present some general comments on problem scaling.

2.6.1 Transformation of variables

One method of scaling is to transform the variables from their original representation, which may reflect
the physical nature of the problem, to variables that have certain desirable properties in terms of
optimization. It is generally helpful for the following conditions to be satisfied:

(i) the variables are all of similar magnitude in the region of interest;

(ii) a fixed change in any of the variables results in similar changes in f xð Þ. Ideally, a unit change in
any variable produces a unit change in f xð Þ;

(iii) the variables are transformed so as to avoid cancellation error in the evaluation of f xð Þ.
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Normally, you should restrict yourself to linear transformations of variables, although occasionally
nonlinear transformations are possible. The most common such transformation (and often the most
appropriate) is of the form

xnew ¼ Dxold;

where D is a diagonal matrix with constant coefficients. Our experience suggests that more use should
be made of the transformation

xnew ¼ Dxold þ v;

where v is a constant vector.

Consider, for example, a problem in which the variable x3 represents the position of the peak of a
Gaussian curve to be fitted to data for which the extreme values are 150 and 170; therefore x3 is known
to lie in the range 150–170. One possible scaling would be to define a new variable �x3, given by

�x3 ¼ x3

170
:

A better transformation, however, is given by defining �x3 as

�x3 ¼ x3 � 160

10
:

Frequently, an improvement in the accuracy of evaluation of f xð Þ can result if the variables are scaled
before the routines to evaluate f xð Þ are coded. For instance, in the above problem just mentioned of
Gaussian curve-fitting, x3 may always occur in terms of the form x3 � xmð Þ, where xm is a constant
representing the mean peak position.

2.6.2 Scaling the objective function

The objective function has already been mentioned in the discussion of scaling the variables. The
solution of a given problem is unaltered if f xð Þ is multiplied by a positive constant, or if a constant
value is added to f xð Þ. It is generally preferable for the objective function to be of the order of unity in
the region of interest; thus, if in the original formulation f xð Þ is always of the order of 10þ5 (say), then
the value of f xð Þ should be multiplied by 10�5 when evaluating the function within an optimization
routine. If a constant is added or subtracted in the computation of f xð Þ, usually it should be omitted,
i.e., it is better to formulate f xð Þ as x2

1 þ x2
2 rather than as x2

1 þ x22 þ 1000 or even x2
1 þ x2

2 þ 1. The
inclusion of such a constant in the calculation of f xð Þ can result in a loss of significant figures.

2.6.3 Scaling the constraints

A ‘well scaled’ set of constraints has two main properties. Firstly, each constraint should be well-
conditioned with respect to perturbations of the variables. Secondly, the constraints should be balanced
with respect to each other, i.e., all the constraints should have ‘equal weight’ in the solution process.

The solution of a linearly- or nonlinearly-constrained problem is unaltered if the ith constraint is
multiplied by a positive weight wi. At the approximation of the solution determined by an active-set
solver, any active linear constraints will (in general) be satisfied ‘exactly’ (i.e., to within the tolerance
defined by machine precision) if they have been properly scaled. This is in contrast to any active
nonlinear constraints, which will not (in general) be satisfied ‘exactly’ but will have ‘small’ values (for
example, ĝ1 x�ð Þ ¼ 10�8, ĝ2 x�ð Þ ¼ �10�6, and so on). In general, this discrepancy will be minimized if
the constraints are weighted so that a unit change in x produces a similar change in each constraint.

A second reason for introducing weights is related to the effect of the size of the constraints on the
Lagrange multiplier estimates and, consequently, on the active-set strategy. This means that different
sets of weights may cause an algorithm to produce different sequences of iterates. Additional discussion
is given in Gill et al. (1981).
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2.7 Analysis of Computed Results

2.7.1 Convergence criteria

The convergence criteria inevitably vary from routine to routine, since in some cases more information
is available to be checked (for example, is the Hessian matrix positive definite?), and different checks
need to be made for different problem categories (for example, in constrained minimization it is
necessary to verify whether a trial solution is feasible). Nonetheless, the underlying principles of the
various criteria are the same; in non-mathematical terms, they are:

(i) is the sequence x kð Þ� 	
converging?

(ii) is the sequence f kð Þ� 	
converging?

(iii) are the necessary and sufficient conditions for the solution satisfied?

The decision as to whether a sequence is converging is necessarily speculative. The criterion used in the
present routines is to assume convergence if the relative change occurring between two successive
iterations is less than some prescribed quantity. Criterion (iii) is the most reliable but often the
conditions cannot be checked fully because not all the required information may be available.

2.7.2 Checking results

Little a priori guidance can be given as to the quality of the solution found by a nonlinear optimization
algorithm, since no guarantees can be given that the methods will not fail. Therefore, you should always
check the computed solution even if the routine reports success. Frequently a ‘solution’ may have been
found even when the routine does not report a success. The reason for this apparent contradiction is that
the routine needs to assess the accuracy of the solution. This assessment is not an exact process and
consequently may be unduly pessimistic. Any ‘solution’ is in general only an approximation to the
exact solution, and it is possible that the accuracy you have specified is too stringent.

Further confirmation can be sought by trying to check whether or not convergence tests are almost
satisfied, or whether or not some of the sufficient conditions are nearly satisfied. When it is thought that
a routine has returned a nonzero value of ifail only because the requirements for ‘success’ were too
stringent it may be worth restarting with increased convergence tolerances.

For constrained problems, check whether the solution returned is feasible, or nearly feasible; if not, the
solution returned is not an adequate solution.

Confidence in a solution may be increased by restarting the solver with a different initial approximation
to the solution. See Section 8.3 of Gill et al. (1981) for further information.

2.7.3 Monitoring progress

Many of the routines in the chapter have facilities to allow you to monitor the progress of the
minimization process, and you are encouraged to make use of these facilities. Monitoring information
can be a great aid in assessing whether or not a satisfactory solution has been obtained, and in
indicating difficulties in the minimization problem or in the ability of the routine to cope with the
problem.

The behaviour of the function, the estimated solution and first derivatives can help in deciding whether
a solution is acceptable and what to do in the event of a return with a nonzero value of ifail.

2.7.4 Confidence intervals for least squares solutions

When estimates of the parameters in a nonlinear least squares problem have been found, it may be
necessary to estimate the variances of the parameters and the fitted function. These can be calculated
from the Hessian of the objective f xð Þ at the solution.

In many least squares problems, the Hessian is adequately approximated at the solution by G ¼ 2JTJ
(see Section 2.5.3). The Jacobian, J , or a factorization of J is returned by all the comprehensive least
squares routines and, in addition, a routine is available in the Library to estimate variances of the
parameters following the use of most of the nonlinear least squares routines, in the case that G ¼ 2JTJ
is an adequate approximation.
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Let H be the inverse of G, and S be the sum of squares, both calculated at the solution �x; an unbiased
estimate of the variance of the ith parameter xi is

var �xi ¼ 2S

m� n
Hii

and an unbiased estimate of the covariance of �xi and �xj is

covar �xi; �xj

� � ¼ 2S

m� n
Hij:

If x� is the true solution, then the 100 1� �ð Þ% confidence interval on �x is

�xi �
ffiffiffiffiffiffiffiffiffiffiffiffi
var �xi

p
:t 1��=2;m�nð Þ < x�i < �xi þ

ffiffiffiffiffiffiffiffiffiffiffiffi
var �xi

p
:t 1��=2;m�nð Þ; i ¼ 1; 2; . . . ; n

where t 1��=2;m�nð Þ is the 100 1� �ð Þ=2 percentage point of the t-distribution with m� n degrees of
freedom.

In the majority of problems, the residuals ri, for i ¼ 1; 2; . . . ;m, contain the difference between the
values of a model function � z; xð Þ calculated for m different values of the independent variable z, and
the corresponding observed values at these points. The minimization process determines the parameters,
or constants x, of the fitted function � z; xð Þ. For any value, �z, of the independent variable z, an
unbiased estimate of the variance of � is

var� ¼ 2S

m� n

Xn
i¼1

Xn
j¼1

@�

@xi

� �
�z

@�

@xj

� �
�z

Hij:

The 100 1� �ð Þ% confidence interval on f at the point �z is

� �z; �xð Þ �
ffiffiffiffiffiffiffiffiffiffi
var�

p
:t �=2;m�nð Þ < � �z; x�ð Þ < � �z; �xð Þ þ

ffiffiffiffiffiffiffiffiffiffi
var�

p
:t �=2;m�nð Þ:

For further details on the analysis of least squares solutions see Bard (1974) and Wolberg (1967).

3 Recommendations on Choice and Use of Available Routines

The choice of routine depends on several factors: the type of problem (unconstrained, etc.); the level of
derivative information available (function values only, etc.); your experience (there are easy-to-use
versions of some routines); whether or not a problem is sparse; whether or not the routine is to be used
in a multithreaded environment; and whether computational time has a high priority. Not all choices are
catered for in the current version of the Library.

3.1 Easy-to-use and Comprehensive Routines

Many routines appear in the Library in two forms: a comprehensive form and an easy-to-use form. The
purpose of the easy-to-use forms is to make the routine simple to use by including in the calling
sequence only those arguments absolutely essential to the definition of the problem, as opposed to
arguments relevant to the solution method. If you are an experienced user the comprehensive routines
have additional arguments which enable you to improve their efficiency by ‘tuning’ the method to a
particular problem. If you are a casual or inexperienced user, this feature is of little value and may in
some cases cause a failure because of a poor choice of some arguments.

In the easy-to-use routines, these extra arguments are determined either by fixing them at a known safe
and reasonably efficient value, or by an auxiliary routine which generates a ‘good’ value automatically.

For routines introduced since Mark 12 of the Library a different approach has been adopted between the
choice of easy-to-use and comprehensive routines. The optimization routine has an easy-to-use
argument list, but additional arguments may be changed from their default values by calling an ‘option’
setting routine before the call to the main optimization routine. This approach has the advantages of
allowing the options to be given in the form of keywords and requiring only those options that are to be
different from their default values to be set.
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3.2 Thread Safe Routines

Many of the routines in this chapter come in pairs, with each routine in the pair having exactly the same
functionality, except that one of them has additional arguments in order to make it safe for use in
multithreaded applications. The routine that is safe for use in multithreaded applications has an ‘a’ as
the last character in the name, in place of the usual ‘f’.

An example of such a pair is e04aba and e04abf.

3.3 Reverse Communication Routines

Most of the routines in this chapter are called just once in order to compute the minimum of a given
objective function subject to a set of constraints on the variables. The objective function and nonlinear
constraints (if any) are specified by you and written as subroutines to a very rigid format described in
the relevant routine document.

This chapter also contains a pair of reverse communication routines, e04uff/e04ufa, which solve dense
NLP problems using a sequential quadratic programming method. These may be convenient to use
when the minimization routine is being called from a computer language which does not fully support
procedure arguments in a way that is compatible with the Library. These routines are also useful if a
large amount of data needs to be transmitted into the routine. See Section 3.3.3 in How to Use the NAG
Library and its Documentation for more information about reverse communication routines.

3.4 Choosing Between Variant Routines for Some Problems

As evidenced by the wide variety of routines available in Chapter E04, it is clear that no single
algorithm can solve all optimization problems. It is important to try to match the problem to the most
suitable routine, and that is what the decision trees in Section 4 help to do.

Sometimes in Chapter E04 more than one routine is available to solve precisely the same optimization
problem. If their differences lay in the underlying method, refer to the sections above. Section 2.5.4
discusses key features of interior point methods (represented by e04stf) and active-set SQP methods
(for example, e04ugf/e04uga or e04vhf). Alternatively, there are routines implementing slightly
different variants of the same method (such as e04ucf/e04uca and e04wdf). Experience shows that in
this case although both routines can usually solve the same problem and get similar results, sometimes
one routine will be faster, sometimes one might find a different local minimum to the other, or, in
difficult cases, one routine may obtain a solution when the other one fails.

After using one of these routines, if the results obtained are unacceptable for some reason, it may be
worthwhile trying the other routine instead. In the absence of any other information, in the first instance
you are recommended to try using e04ucf/e04uca, and if that proves unsatisfactory, try using e04wdf.
Although the algorithms used are very similar, the two routines each have slightly different optional
parameters which may allow the course of the computation to be altered in different ways.

Other pairs of routines which solve the same kind of problem are e04nqf (recommended first choice) or
e04nkf/e04nka, for sparse quadratic or linear programming problems, and e04vhf (recommended) or
e04ugf/e04uga, for sparse nonlinear programming. In these cases the argument lists are not so similar
as e04ucf/e04uca or e04wdf, but the same considerations apply.

3.5 NAG Optimization Modelling Suite

Mark 26 of the Library introduced the NAG optimization modelling suite, a suite of routines which
allows you to define and solve various optimization problems in a uniform manner. The first key feature
of the suite is that the definition of the optimization problem and the call to the solver have been
separated so it is possible to set up a problem in the same way for different solvers. The second feature
is that the problem representation is built up from basic components (for example, a QP problem is
composed of a quadratic objective, simple bounds and linear constraints), therefore different types of
problems reuse the same routines for their common parts.

A connecting element to all routines in the suite is a handle, a pointer to an internal data structure,
which is passed among the routines. It holds all information about the problem, the solution and the
solver. Each handle should go through four stages in its life: initialization, problem formulation,
problem solution and deallocation.
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The initialization is performed by e04raf which creates an empty problem with n decision variables. A
call to e04rzf marks the end of the life of the handle as it deallocates all the allocated memory and data
within the handle and destroys the handle itself. After the initialization, the objective may be defined as
one of the following:

e04ref – a linear objective as a dense vector;

e04rff – a quadratic objective or a sparse linear objective;

e04rgf – a nonlinear objective function;

e04rmf – a nonlinear least squares objective function.

The routines for constraint definition are

e04rhf – simple bounds;

e04rjf – linear constraints;

e04rkf – nonlinear constraints;

e04rlf – second derivatives for the objective and/or constraints;

e04rnf – linear matrix inequalities;

e04rpf – quadratic terms for bilinear matrix inequalities.

These routines may be called in an arbitrary order, however, a call to e04rnf must precede a call to
e04rpf for the matrix inequalities with bilinear terms and the nonlinear objective or constraints (e04rgf
or e04rkf) must precede the definition of the second derivatives by e04rlf. For further details please
refer to the documentation of the individual routines.

The suite also includes the following service routines:

e04ryf – query/printing routine;

e04zmf – supply an optional parameter from a character string;

e04zpf – supply one or more optional parameters from a file;

e04znf – get the settings of an optional parameter;

e04rxf – read or write information into the handle.

When the problem is fully formulated, the handle can be passed to a solver which is compatible with
the defined problem. At the current mark of the Library the NAG optimization modelling suite
comprises of e04fff, e04mtf, e04stf and e04svf. The solver indicates by an error flag if it cannot deal
with the given formulation. A diagram of the life cycle of the handle is depicted in Figure 2.
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3.6 Service Routines

One of the most common errors in the use of optimization routines is that user-supplied subroutines do
not evaluate the relevant partial derivatives correctly. Because exact gradient information normally
enhances efficiency in all areas of optimization, you are encouraged to provide analytical derivatives
whenever possible. However, mistakes in the computation of derivatives can result in serious and
obscure run-time errors. Consequently, service routines are provided to perform an elementary check
on the gradients you supplied. These routines are inexpensive to use in terms of the number of calls
they require to user-supplied subroutines.

The appropriate checking routines are as follows:

Minimization routine Checking routine(s)

e04kdf e04hcf
e04lbf e04hcf and e04hdf
e04gbf e04yaf
e04gdf e04yaf
e04hef e04yaf and e04ybf

It should be noted that routines e04stf, e04ucf/e04uca, e04uff/e04ufa, e04ugf/e04uga, e04usf/e04usa,
e04vhf and e04wdf each incorporate a check on the derivatives being supplied. This involves verifying
the gradients at the first point that satisfies the linear constraints and bounds. There is also an option to
perform a more reliable (but more expensive) check on the individual gradient elements being supplied.
Note that the checks are not infallible.

A second type of service routine computes a set of finite differences to be used when approximating
first derivatives. Such differences are required as input arguments by some routines that use only
function evaluations.

e04ycf estimates selected elements of the variance-covariance matrix for the computed regression
parameters following the use of a nonlinear least squares routine.

e04xaf/e04xaa estimates the gradient and Hessian of a function at a point, given a routine to calculate
function values only, or estimates the Hessian of a function at a point, given a routine to calculate
function and gradient values.
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3.7 Function Evaluations at Infeasible Points

All the solvers for constrained problems based on an active-set method will ensure that any evaluations
of the objective function occur at points which approximately (up to the given tolerance) satisfy any
simple bounds or linear constraints.

There is no attempt to ensure that the current iteration satisfies any nonlinear constraints. If you wish to
prevent your objective function being evaluated outside some known region (where it may be undefined
or not practically computable), you may try to confine the iteration within this region by imposing
suitable simple bounds or linear constraints (but beware as this may create new local minima where
these constraints are active).

Note also that some routines allow you to return the argument (iflag, inform, mode or status) with a
negative value to indicate when the objective function (or nonlinear constraints where appropriate)
cannot be evaluated. In case the routine cannot recover (e.g., cannot find a different trial point), it forces
an immediate clean exit from the routine.

3.8 Related Problems

Apart from the standard types of optimization problem, there are other related problems which can be
solved by routines in this or other chapters of the Library.

h02bbf solves dense integer LP problems, h02cbf solves dense integer QP problems, h02cef solves
sparse integer QP problems, h02daf solves dense mixed integer NLP problems and h03abf solves a
special type of such problem known as a ‘transportation’ problem.

Several routines in Chapters F04 and F08 solve linear least squares problems, i.e., minimize
Xm
i¼1

ri xð Þ2

where ri xð Þ ¼ bi �
Xn
j¼1

aijxj.

e02gaf solves an overdetermined system of linear equations in the l1 norm, i.e., minimizes
Xm
i¼1

ri xð Þj j,
with ri as above, and e02gbf solves the same problem subject to linear inequality constraints.

e02gcf solves an overdetermined system of linear equations in the l1 norm, i.e., minimizes max
i

ri xð Þj j,
with ri as above.

Chapter E05 contains routines for global minimization.

Section 2.5.5 describes how a multi-objective optimization problem might be addressed using routines
from this chapter and from Chapter E05.

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 26.1 E04.21



4 Decision Trees

no objective linear quadratic nonlinear sum of squares

unconstrained QP
See Tree 2

NLP
See Tree 3

LSQ
See Tree 4

simple bounds LP
See Tree 1

LP
See Tree 1

QP
See Tree 2

NLP
See Tree 3

LSQ
See Tree 4

linear LP
See Tree 1

LP
See Tree 1

QP
See Tree 2

NLP
See Tree 3

LSQ
See Tree 4

nonlinear NLP
See Tree 3

NLP
See Tree 3

NLP
See Tree 3

NLP
See Tree 3

LSQ
See Tree 4

matrix inequalities e04svf e04svf e04svf

Table 1
Decision Matrix

Tree 1: Linear Programming (LP)

Is the problem sparse/large-scale?
yes

e04mtf, e04nqf, e04nkf

no

e04mff, e04ncf

Tree 2: Quadratic Programming (QP)

Is the problem sparse/large-scale?
yes

Is it convex?
yes

e04nqf, e04stf, e04nkf

no

e04stf, e04vhf, e04ugf

no

Is it convex?
yes

e04ncf

no

e04nff
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Tree 3: Nonlinear Programming (NLP)

Is the problem sparse/large-
scale? yes

Is it unconstrained?
yes

Are first derivatives
available? yes

e04stf, e04dga, e04vhf,
e04uga

no

e04vhf, e04uga

no

Are first derivatives
available? yes

Are second derivatives
available? yes

e04stf

no

e04vhf, e04stf, e04uga

no

e04vhf, e04uga

no

Are there linear or nonlinear
constraints? yes

e04uca, e04ufa, e04wdf

no

Is there only one variable?
yes

Are first derivatives
available? yes

e04bba

no

e04aba

no

Is it unconstrained with the
objective with many
discontinuities?

yes
e04cbf or e05saf

no

Are first derivatives
available? yes

Are second derivatives
available? yes

Are you an experienced
user? yes

e04lbf

no

e04lyf

no

Are many function
evaluations problematic? yes

Are you an experienced
user? yes

e04uca, e04ufa, e04wdf

no

e04kyf

no

Are you an experienced
user? yes

e04kdf

no

e04kzf

no

Is the objective expensive to
evaluate or noisy? yes

e04jcf

no

Are you an experienced
user? yes

e04uca, e04ufa, e04wdf

no

e04jyf
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Tree 4: Least squares problems (LSQ)

Is the objective sum of
squared linear functions and
no nonlinear constraints?

yes
Are there linear constraints?

yes
e04ncf

no

Are there simple bounds?
yes

e04pcf, e04ncf

no

Chapters F04, F07 or F08 or
e04pcf, e04ncf

no

Are there linear or nonlinear
constraints? yes

e04usf

no

Are there bound constraints?
yes

Are first derivatives
available? yes

e04usf

no

e04fff

no

Are first derivatives
available? yes

Are second derivatives
available? yes

Are you an experienced
user? yes

e04hef

no

e04hyf

no

Are many function
evaluations problematic? yes

Are you an experienced
user? yes

e04gbf

no

e04gyf

no

Are you an experienced
user? yes

e04gdf

no

e04gzf

no

e04fff, e04fcf

5 Functionality Index

Linear programming (LP),
dense,

active-set method/primal simplex,
alternative 1 ............................................................................................................ e04mff
alternative 2 ............................................................................................................ e04ncf

sparse,
interior point method (IPM)......................................................................................... e04mtf
active-set method/primal simplex,

recommended (see Section 3.4) .............................................................................. e04nqf
alternative................................................................................................................ e04nkf

Quadratic programming (QP),
dense,

active-set method for (possibly nonconvex) QP problem ............................................ e04nff
active-set method for convex QP problem................................................................... e04ncf

sparse,
active-set method sparse convex QP problem,

recommended (see Section 3.4) .............................................................................. e04nqf
alternative................................................................................................................ e04nkf
interior point method (IPM) for (possibly nonconvex) QP problems ..................... e04stf
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Nonlinear programming (NLP),
dense,

active-set sequential quadratic programming (SQP),
recommended (see Section 3.4) .............................................................................. e04ucf
alternative................................................................................................................ e04wdf
reverse communication............................................................................................ e04uff

sparse,
interior point method (IPM)......................................................................................... e04stf
active-set sequential quadratic programming (SQP),

recommended (see Section 3.4) .............................................................................. e04vhf
alternative................................................................................................................ e04ugf

Nonlinear programming (NLP) – derivative free optimization (DFO),
model-based method for bound-constrained optimization ................................................. e04jcf
Nelder–Mead simplex method for unconstrained optimization ......................................... e04cbf

Nonlinear programming (NLP) – special cases,
unidimensional optimization (one-dimensional) with bound constraints,

method based on quadratic interpolation, no derivatives ............................................. e04abf
method based on cubic interpolation ........................................................................... e04bbf

unconstrained,
preconditioned conjugate gradient method ................................................................... e04dgf

bound-constrained,
quasi-Newton algorithm, no derivatives ....................................................................... e04jyf
quasi-Newton algorithm, first derivatives..................................................................... e04kyf
modified Newton algorithm, first derivatives ............................................................... e04kdf
modified Newton algorithm, first derivatives, easy-to-use............................................ e04kzf
modified Newton algorithm, first and second derivatives ............................................ e04lbf
modified Newton algorithm, first and second derivatives, easy-to-use......................... e04lyf

Semidefinite programming (SDP),
generalized augmented Lagrangian method for SDP and SDP with bilinear matrix
inequalities (BMI-SDP).....................................................................................................

e04svf

Linear least squares, linear regression, data fitting,
constrained,

bound-constrained least squares problem ..................................................................... e04pcf
linearly-constrained active-set method.......................................................................... e04ncf

Nonlinear least squares, data fitting,
unconstrained,

combined Gauss–Newton and modified Newton algorithm,
no derivatives.......................................................................................................... e04fcf
no derivatives, easy-to-use ...................................................................................... e04fyf
first derivatives........................................................................................................ e04gdf
first derivatives, easy-to-use .................................................................................... e04gzf
first and second derivatives..................................................................................... e04hef
first and second derivatives, easy-to-use ................................................................. e04hyf

combined Gauss–Newton and quasi-Newton algorithm,
first derivatives........................................................................................................ e04gbf
first derivatives, easy-to-use .................................................................................... e04gyf

covariance matrix for nonlinear least squares problem (unconstrained)....................... e04ycf
model-based derivative free algorithm ......................................................................... e04fff

bound constrained,
nonlinear constraints active-set sequential quadratic programming (SQP) ................... e04usf
model-based derivative free algorithm ......................................................................... e04fff

NAG optimization modelling suite,
initialization of a handle for the NAG optimization modelling suite................................ e04raf
define a linear objective function...................................................................................... e04ref
define a linear or a quadratic objective function .............................................................. e04rff
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define a nonlinear least square objective function ............................................................ e04rmf
define a nonlinear objective function ................................................................................ e04rgf
define bounds of variables ................................................................................................ e04rhf
define a block of linear constraints................................................................................... e04rjf
define a block of nonlinear constraints ............................................................................. e04rkf
define a structure of Hessian of the objective, constraints or the Lagrangian .................. e04rlf
add one or more linear matrix inequality constraints ....................................................... e04rnf
define bilinear matrix terms .............................................................................................. e04rpf
print information about a problem handle......................................................................... e04ryf
set/get information in a problem handle ........................................................................... e04rxf
destroy the problem handle............................................................................................... e04rzf
interior point method (IPM) for linear programming (LP) ............................................... e04mtf
interior point method (IPM) for nonlinear programming (NLP) ....................................... e04stf
generalized augmented Lagrangian method for SDP and SDP with bilinear matrix
inequalities (BMI-SDP).....................................................................................................

e04svf

supply optional parameter values from a character string................................................. e04zmf
get the setting of option ................................................................................................... e04znf
supply optional parameter values from external file ......................................................... e04zpf

Service routines,
input and output (I/O),

read MPS data file defining LP, QP, MILP or MIQP problem.................................... e04mxf
write MPS data file defining LP, QP, MILP or MIQP problem................................... e04mwf
read sparse SPDA data files for linear SDP problems................................................. e04rdf
read MPS data file defining LP or QP problem (deprecated) ...................................... e04mzf

derivative check and approximation,
check user's routine for calculating first derivatives of function.................................. e04hcf
check user's routine for calculating second derivatives of function ............................. e04hdf
check user's routine for calculating Jacobian of first derivatives ................................. e04yaf
check user's routine for calculating Hessian of a sum of squares ............................... e04ybf
estimate (using numerical differentiation) gradient and/or Hessian of a function........ e04xaf
determine the pattern of nonzeros in the Jacobian matrix for e04vhf ......................... e04vjf

covariance matrix for nonlinear least squares problem (unconstrained)............................ e04ycf
option setting routines,

NAG optimization modelling suite,
supply optional parameter values from a character string....................................... e04zmf
get the setting of option ......................................................................................... e04znf
supply optional parameter values from external file ............................................... e04zpf

e04dgf/e04dga,
initialization routine for e04dga .............................................................................. e04wbf
supply optional parameter values from external file ............................................... e04djf
supply optional parameter values from a character string....................................... e04dkf

e04mff/e04mfa,
initialization routine for e04mfa.............................................................................. e04wbf
supply optional parameter values from external file ............................................... e04mgf
supply optional parameter values from a character string....................................... e04mhf

e04ncf/e04nca,
initialization routine for e04nca .............................................................................. e04wbf
supply optional parameter values from external file ............................................... e04ndf
supply optional parameter values from a character string....................................... e04nef

e04nff/e04nfa,
initialization routine for e04nfa............................................................................... e04wbf
supply optional parameter values from external file ............................................... e04ngf
supply optional parameter values from a character string....................................... e04nhf

e04nkf/e04nka,
initialization routine for e04nka .............................................................................. e04wbf
supply optional parameter values from external file ............................................... e04nlf
supply optional parameter values from a character string....................................... e04nmf
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e04nqf,
initialization routine ................................................................................................ e04npf
supply optional parameter values from external file ............................................... e04nrf
set a single option from a character string ............................................................. e04nsf
set a single option from an integer argument ......................................................... e04ntf
set a single option from a real argument................................................................ e04nuf
get the setting of an integer valued option ............................................................. e04nxf
get the setting of a real valued option.................................................................... e04nyf

e04ucf/e04uca and e04uff/e04ufa,
initialization routine for e04uca and e04ufa ........................................................... e04wbf
supply optional parameter values from external file ............................................... e04udf
supply optional parameter values from a character string....................................... e04uef

e04ugf/e04uga,
initialization routine for e04uga .............................................................................. e04wbf
supply optional parameter values from external file ............................................... e04uhf
supply optional parameter values from a character string....................................... e04ujf

e04usf/e04usa,
initialization routine for e04usa .............................................................................. e04wbf
supply optional parameter values from external file ............................................... e04uqf
supply optional parameter values from a character string....................................... e04urf

e04vhf,
initialization routine ................................................................................................ e04vgf
supply optional parameter values from external file ............................................... e04vkf
set a single option from a character string ............................................................. e04vlf
set a single option from an integer argument ......................................................... e04vmf
set a single option from a real argument................................................................ e04vnf
get the setting of an integer valued option ............................................................. e04vrf
get the setting of a real valued option.................................................................... e04vsf

e04wdf,
initialization routine ................................................................................................ e04wcf
supply optional parameter values from external file ............................................... e04wef
set a single option from a character string ............................................................. e04wff
set a single option from an integer argument ......................................................... e04wgf
set a single option from a real argument................................................................ e04whf
get the setting of an integer valued option ............................................................. e04wkf
get the setting of a real valued option.................................................................... e04wlf

6 Auxiliary Routines Associated with Library Routine Arguments

e04cbk nagf_opt_uncon_simplex_dummy_monit
See the description of the argument monit in e04cbf.

e04fcv nagf_opt_lsq_uncon_quasi_deriv_comp_lsqlin_fun
See the description of the argument lsqlin in e04gbf.

e04fdz nagf_opt_lsq_dummy_lsqmon
See the description of the argument lsqmon in e04fcf, e04gdf and e04hef.

e04ffu nagf_opt_bobyqa_ls_dummy_monit
See the description of the argument mon in e04fff.

e04hev nagf_opt_lsq_uncon_quasi_deriv_comp_lsqlin_deriv
See the description of the argument lsqlin in e04gbf.

e04jcp nagf_opt_bounds_bobyqa_func_dummy_monfun
See the description of the argument monfun in e04jcf.

e04mtu nagf_opt_lp_imp_dummy_monit
See the description of the argument monit in e04mtf.

e54nfu nagf_opt_qp_dense_sample_qphess
See the description of the argument qphess in e04nff/e04nfa and h02cbf.

e04nfu nagf_opt_qp_dense_sample_qphess_old
See the description of the argument qphess in e04nff/e04nfa and h02cbf.
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e54nku nagf_opt_qpconvex1_sparse_dummy_qphx
See the description of the argument qphx in e04nkf/e04nka and h02cef.

e04nku nagf_opt_qpconvex1_sparse_dummy_qphx_old
See the description of the argument qphx in e04nkf/e04nka and h02cef.

e04nsh nagf_opt_qpconvex2_sparse_dummy_qphx
See the description of the argument qphx in e04nqf.

e04stu nagf_opt_ipopt_dummy_mon
See the description of the argument mon in e04stf.

e04stv nagf_opt_ipopt_dummy_objfun
See the description of the argument objfun in e04stf.

e04stw nagf_opt_ipopt_dummy_objgrd
See the description of the argument objgrd in e04stf.

e04stx nagf_opt_ipopt_dummy_confun
See the description of the argument confun in e04stf.

e04sty nagf_opt_ipopt_dummy_congrd
See the description of the argument congrd in e04stf.

e04stz nagf_opt_ipopt_dummy_hess
See the description of the argument hess in e04stf.

e04udm nagf_opt_nlp1_dummy_confun
See the description of the argument confun in e04ucf/e04uca and e04usf/e04usa.

e04ugm nagf_opt_nlp1_sparse_dummy_confun
See the description of the argument confun in e04ugf/e04uga.

e04ugn nagf_opt_nlp1_sparse_dummy_objfun
See the description of the argument objfun in e04ugf/e04uga.

e04wdp nagf_opt_nlp2_dummy_confun
See the description of the argument confun in e04wdf.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

e04ccf/e04cca 24 e04cbf
e04fdf 19 e04fyf
e04gcf 19 e04gyf
e04gef 19 e04gzf
e04hff 19 e04hyf
e04jaf 19 e04jyf
e04kaf 19 e04kyf
e04kcf 19 e04kzf
e04laf 19 e04lyf
e04unf 22 e04usf/e04usa
e04upf 19 e04usf/e04usa
e04zcf/e04zca 24 No longer required
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